Skip to main content

Flow Cytometry and Its Utility

  • Chapter
  • First Online:
Chromosome Structure and Aberrations

Abstract

Flow cytometry is a laser-based biophysical technique to study optical properties of microscopic particles in fluid suspension. The technology is not only routinely used in medicine (transplantation, hematology, cancer, prenatal diagnosis, genetics, and sperm sorting for sex preselection) but also has many other applications in basic research, crop improvement, clinical practice, and clinical trials. The principles of flow cytometric chromosome analysis and sorting known as flow cytogenetics and research in this field have increased over the past four decades due to high sensitivity and precision of this technique. The use of nucleic acid-specific fluorochromes has semiautomated quantitative chromosome analysis, thus reducing subjectivity of preexisting slide-based methods. Flow cytometric classification of chromosomes (flow karyotyping) enables detection of chromosomal aberrations, while flow sorting permits isolation of single chromosome types in large quantities to be used for gene mapping, preparation of chromosome-specific gene libraries, and ultimately sequencing leading to chromosome genomics. Flow fluorescent in situ hybridization (FISH), i.e., combined fluorescent in situ hybridization in suspension (FISHIS) and flow cytometry using microsatellite DNA or gene-specific probes, is another approach to increase our knowledge on structure, function, and evolution of chromosomes. These techniques provide increased value for diagnosis and management of clinical diseases, especially cancer which is generally characterized by high chromosomal instability. Flow cytogenetics also has important applications in plant biology, especially in the study of genome evolution and crop improvement. This review outlines the utility of flow cytometry in chromosomal analysis, its applications, limitations, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgrim C, Pottgiesser T, Sander T, Schumacher YO, Baumstark MW (2013) Flow cytometric assessment of erythrocyte shape through analysis of FSC histograms: use of kurtosis and implications for longitudinal evaluation. PLoS One. doi:10.1371/journal.pone.0059862

    PubMed  PubMed Central  Google Scholar 

  • Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans AD, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68(11):5209–5216

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumuganathan K, Slattery JP, Tanksley SD, Earle ED (1991) Preparation and flow cytometric analysis of metaphase chromosomes of tomato. Theor Appl Genet 82:101–111

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Martin GB, Telenius H, Tanksley SD, Earle ED (1994) Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Mol Gen Genet 242(5):551–558

    Article  CAS  PubMed  Google Scholar 

  • Benfey TJ, Solar II, de Jong G, Donaldson EM (1986) Flow-cytometric confirmation of aneuploidy in sperm from triploid rainbow trout. Trans Am Fish Soc 115(6):838–840

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Johnston S, Hodnett GL, Price HJ (2000) Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann Bot 85(3):351–357

    Article  CAS  Google Scholar 

  • Bickham JW, Tucker PK, Legler JM (1985) Diploid-triploid mosaicism: an unusual phenomenon in side-necked turtles (Platemys platycephala). Science 227(4694):1591–1593

    Article  CAS  PubMed  Google Scholar 

  • Bijman JT (1983) Optimization of mammalian chromosome suspension preparations employed in a flow cytometric analysis. Cytometry 3(5):354–358

    Article  CAS  PubMed  Google Scholar 

  • Blennow E (2004) Reverse painting highlights the origin of chromosome aberrations. Chromosom Res 12(1):25–33

    Article  CAS  Google Scholar 

  • Boschman GA, Manders EM, Rens W, Slater R, Aten JA (1992) Semi‐automated detection of aberrant chromosomes in bivariate flow karyotypes. Cytometry 13(5):469–477

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55(1–3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Bunthof CJ, Bloemen K, Breeuwer P, Rombouts FM, Abee T (2001) Flow cytometric assessment of viability of lactic acid bacteria. Appl Environ Microbiol 67(5):2326–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton DW, Bickham JW, Genoways HH (1989) Flow-cytometric analysis of nuclear DNA content in four families of neotropical bats. Evolution 43:756–765

    Article  Google Scholar 

  • Carrano AV, Gray JW, Langlois RG, Burkhartschultz KJ, Van Dilla MA (1979) Measurement and purification of human chromosomes by flow cytometry and sorting. Proc Natl Acad Sci U S A 76:1382–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassens U, Göhde W, Kuling G, Gröning A, Schlenke P, Lehman LG, Traoré Y, Servais J, Henin Y, Reichelt D, Greve B (2004) Simplified volumetric flow cytometry allows feasible and accurate determination of CD4 T lymphocytes in immunodeficient patients worldwide. Antivir Ther 9(3):395–406

    PubMed  Google Scholar 

  • Conia J, Bergounioux C, Perennes C, Muller P, Brown S, Gadal P (1987) Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry 8(5):500–508

    Article  CAS  PubMed  Google Scholar 

  • Conia J, Muller P, Brown S, Bergounioux C, Gadal P (1989) Monoparametric models of flow cytometric karyotypes with spreadsheet software. Theor Appl Genet 77(2):295–303

    Article  CAS  PubMed  Google Scholar 

  • Crissman HA, Stevenson AP, Kissane RJ, Tobey RA (1979) Techniques for quantitative staining of cellular DNA for flow cytometry analysis. In: Melamed MR, Mullaney PF, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley, New York, pp 243–261

    Google Scholar 

  • Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13(8):795–808

    Article  CAS  PubMed  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60(4):641–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BH, Olsen S, Bigelow NC, Chen JC (1998) Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 38(8):749–756

    Article  CAS  PubMed  Google Scholar 

  • de Laat AMM, Blaas J (1984) Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467

    Article  PubMed  Google Scholar 

  • Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95(1):99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188(1):93–98

    Article  PubMed  Google Scholar 

  • Doležel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Crit Rev Plant Sci 13:275–309

    Article  Google Scholar 

  • Dziegiel MH, Nielsen LK, Berkowicz A (2006) Detecting fetomaternal hemorrhage by flow cytometry. Curr Opin Hematol 13(6):490–495

    Article  PubMed  Google Scholar 

  • Echelle AA, Echelle AF, DeBault LE, Durham DW (1988) Ploidy levels in silverside fishes (Atherinidae, Menidia) on the Texas coast: 37. Flow-cytometric analysis of the occurrence of allotriploidy. J Fish Biol 32:835–844

    Article  Google Scholar 

  • Escribano L, Dı́az-Agustı́n B, Bellas C (2001) Utility of flow cytometric analysis of mast cells in the diagnosis and classification of adult mastocytosis. Leuk Res 25(7):563–570

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Darzynkiewicz Z, Melamed MR (1982) Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J Histochem Cytochem 30(3):279–280

    Article  CAS  PubMed  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2213

    CAS  PubMed  Google Scholar 

  • Feuillet C, Eversole K (2007) Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Article  Google Scholar 

  • Fugger EF (1999) Clinical experience with flow cytometric separation of human X-and Y-chromosome bearing sperm. Theriogenology 52(8):1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Fukui K (2009) Structural analyses of chromosomes and their constituent proteins. Cytogenet Genome Res 124:215–227

    Article  CAS  PubMed  Google Scholar 

  • Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64(2):197–224

    Article  Google Scholar 

  • Giaretti W, Nüsse M (1994) Light scatter of isolated cell nuclei as a parameter discriminating the cell-cycle subcompartments. Methods Cell Biol 41:389–400

    Article  CAS  PubMed  Google Scholar 

  • Goddard KA, Dawley RM (1990) Clonal inheritance of a diploid nuclear genome by a hybrid freshwater minnows (Phoxinus eos-neogaeus, Pisces: Cyprinidae). Evolution 44:1052–1065

    Article  Google Scholar 

  • Gorczyca W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53(8):1945–1951

    CAS  PubMed  Google Scholar 

  • Graff RJ, Xiao H, Schnitzler MA, Ercole P, Solomon H, Pessin T, Lentine KL (2009) The role of positive flow cytometry crossmatch in late renal allograft loss. Hum Immunol 70(7):502–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray JW, Caranno AV, Steinmetz LL, Van Dilla MA, Moore DH II, Mayall BH, Mendelsohn ML (1975a) Chromosome measurement and sorting by flow system. Proc Natl Acad Sci U S A 72(4):1231–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JW, Carrano AV, Moore HH, Steinmetz LL, Minkler J, Mayall BH, Mendelsohn ML, Van Dilla MA (1975b) High-speed quantitative karyotyping by flow microfluorometry. Clin Chem 21(9):1258–1262

    CAS  PubMed  Google Scholar 

  • Hall SE, Rosse WF (1996) The use of monoclonal antibodies and flow cytometry in the diagnosis of paroxysmal nocturnal hemoglobinuria. Blood 87(12):5332–5340

    CAS  PubMed  Google Scholar 

  • Han YH, Zhang ZH, Huang SW, Jin WW (2011) An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2. BMC Genet 12:18–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinegardner R, Rosen DE (1972) Cellular DNA content and the evolution of teleostean fishes. Am Nat 106:621–644

    Article  CAS  Google Scholar 

  • Jepras RI, Paul FE, Pearson SC, Wilkinson MJ (1997) Rapid assessment of antibiotic effects on Escherichia coli by bis-(1, 3-dibutylbarbituric acid) trimethine oxonol and flow cytometry. Antimicrob Agents Chemother 41(9):2001–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA (1995) Sex preselection by flow cytometric separation of X and Y chromosome-bearing sperm based on DNA difference: a review. Reprod Fertil Dev 7(4):893–903

    Article  CAS  PubMed  Google Scholar 

  • Kamnasaran D, O’Brien PCM, Schuffenhauer S, Quarrell O, Lupski JR, Grammatico P, Ferguson-Smith MA, Cox DW (2001) Defining the breakpoints of proximal chromosome 14q rearrangements in nine patients using flow-sorted chromosomes. Am J Med Genet 102(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Kejnovský E, Vrána J, Matsunaga S, Souček P, Široký J, Doleže J, Vyskot B (2001) Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes. Genetics 158(3):1269–1277

    PubMed  PubMed Central  Google Scholar 

  • Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST, van Oers MHJ (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  • Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170(2):823–829

    Article  PubMed  PubMed Central  Google Scholar 

  • Langlois RG, Yu LC, Gray JW, Carrano AV (1982) Quantitative karyotyping of human chromosomes by dual beam flow cytometry. Proc Natl Acad Sci U S A 79:7876–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebo RV (1982) Chromosome sorting and DNA sequence localization: a review. Cytometry 3(3):145–154

    Article  CAS  PubMed  Google Scholar 

  • Lebo RV, Gorin F, Fleterick RJ, Kao FT, Cheung MC, Bruce BD, Kan YW (1984) High-resolution chromosome sorting and DNA spot-blot analysis assign McArdle’s syndrome to chromosome-11. Science 225(4657):57–59

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Arumuganathan K, Chung YS, Kim KY, Chung WB, Bae KS, Kim DH, Chung DS, Kwon OC (2000) Flow cytometric analysis and chromosome sorting of barley (Hordeum vulgare L.). Mol Cell 10(6):619–625

    CAS  Google Scholar 

  • Leitch AR, Schwarzacher T, Wang ML, Leitch IJ, Surlan-Momirovich G, Moore G, Heslop-Harrison JS (1993) Molecular cytogenetic analysis of repeated sequences in a long term wheat suspension culture. Plant Cell Tissue Organ Cult 33:287–296

    Article  CAS  Google Scholar 

  • López-Amorós R, Castel S, Comas-Riu J, Vives-Rego J (1997) Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. Cytometry 29(4):298–305

    Article  PubMed  Google Scholar 

  • Lucretti S, Doležel J (1997) Bivariate flow karyotyping in broad bean (Vicia faba). Cytometry 28(3):236–242

    Article  CAS  PubMed  Google Scholar 

  • Lucretti S, Doležel J, Schubert I, Fuchs J (1993) Flow karyotyping and sorting of Vicia faba chromosomes. Theor Appl Genet 85(6–7):665–672

    Article  CAS  PubMed  Google Scholar 

  • Martis MM, Zhou R, Haseneyer G et al (2013) Reticulate evolution of the rye genome. Plant Cell 25(10):3685–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Lebel-Hardenack S, Kejnovský E, Vyskot B, Grant SR, Kawano S (2005) An anther and petal-specific gene SlMF1 is a multicopy gene with homologous sequences on sex chromosomes. Genes Genet Syst 80(6):395–401

    Article  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak de Jimenez MK, Bassi FM, Ghavami F, Simons K, Dizon R, Seetan RI, Alnemer LM, Denton AM, Doğramacı M, Šimková H, Doležel J, Seth K, Luo MC, Dvorak J, Gu YQ, Kianian SF (2013) A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Funct Integr Genomics 13(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Michelson AD (1996) Flow cytometry: a clinical test of platelet function. Blood 87(12):4925–4936

    CAS  PubMed  Google Scholar 

  • Nakamura D, Tiersch TR, Douglass M, Chandler RW (1990) Rapid identification of sex in birds by flow cytometry. Cytogenet Cell Genet 53(4):201–205

    Article  CAS  PubMed  Google Scholar 

  • Ng BL, Carter NP (2006) Factors affecting flow karyotype resolution. Cytometry A 69(9):1028–1036

    Article  PubMed  Google Scholar 

  • Noguchi PD, Browne WC (1978) The use of chicken erythrocyte nuclei as a biological standard for flow microfluorometry. J Histochem Cytochem 26(9):761–763

    Article  CAS  PubMed  Google Scholar 

  • Orfao A, Schmitz G, Brando B, Ruiz-Arguelles A, Basso G, Braylan R, Rothe G, Lacombe F, Lanza F, Papa S, Lucio P, San Miguel JF (1999) Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions. Clin Chem 45(10):1708–1717

    CAS  PubMed  Google Scholar 

  • Otto FJ, Oldiges H (1980) Flow cytogenetic studies in chromosomes and whole cells for the detection of clastogenic effects. Cytometry 1(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Piagnerelli M, Boudjeltia KZ, Brohee D, Vereerstraeten A, Piro P, Vincent J-L, Vanhaeverbeek M (2007) Assessment of erythrocyte shape by flow cytometry techniques. J Clin Pathol 60(5):549–554

    Article  CAS  PubMed  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1):6–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Požárková D, Koblížková A, Román B, Torres AM, Lucretti S, Lysák M, Doležel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45(3):337–345

    Article  Google Scholar 

  • Richards SJ, Rawstron AC, Hillmen P (2000) Application of flow cytometry to the diagnosis of paroxysmal nocturnal hemoglobinuria. Cytometry 42(4):223–233

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56:350–360

    Article  CAS  PubMed  Google Scholar 

  • Ruf A, Patscheke H (1995) Platelet‐induced neutrophil activation: platelet‐expressed fibrinogen induces the oxidative burst in neutrophils by an interaction with CD11C/CD18. Br J Haematol 90(4):791–796

    Article  CAS  PubMed  Google Scholar 

  • Salzman GC (2001) Light scatter: detection and usage. In: Robinson JP, Darzynkiewicz Z, Hoffman R, Nolan JP, Orfao A, Rabinovitch PS, Watkins S (eds) Current protocols in cytometry. Wiley, New York, pp 1.13.1–1.13.8

    Google Scholar 

  • Schubert I, Fransz PF, Fuchs J, de Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23(1–3):57–69

    Article  CAS  PubMed  Google Scholar 

  • Shapiro HM (1995) Practical flow cytometry. Alan R. Liss Inc, New York

    Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry. Wiley, Hoboken

    Book  Google Scholar 

  • Shattil SJ, Cunningham M, Hoxie JA (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70(1):307–315

    CAS  PubMed  Google Scholar 

  • Silverman GA, Schneider SS, Massa HF, Flint A, Lalande M, Leonard JC, Overhauser J, van den Engh G, Trask BJ (1995) The 18q(−) syndrome- analysis of chromosomes by bivariate flow karyotyping and the PCR reveals a successive set of deletion breakpoints within 18q21.2–q22.2. Am J Hum Genet 56(4):926–937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotlar K, Horny HP, Simonitsch I et al (2004) CD25 indicates the neoplastic phenotype of mast cells: a novel immunohistochemical marker for the diagnosis of systemic mastocytosis (SM) in routinely processed bone marrow biopsy specimens. Am J Surg Pathol 28(10):1319–1325

    Article  PubMed  Google Scholar 

  • Steen HB (2004) Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles. Cytometry A 57(2):94–99

    Article  PubMed  Google Scholar 

  • Sutherland DR, Anderson L, Keeney M et al (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. J Hematother 5(3):213–226

    Article  CAS  PubMed  Google Scholar 

  • Sutton WS (1903) The Chromosomes in Heredity. Biol Bull 4:237–251

    Article  Google Scholar 

  • Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci U S A 36:643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, Salama NR (2010) Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 141(5):822–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sycuro LK, Rule CS, Petersen TW, Wyckoff TJ, Sessler T, Nagarkar DB, Khalid F, Pincus Z, Biboy J, Vollmer W, Salama NR (2013) Flow cytometry‐based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol Microbiol 90(4):869–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210

    Article  CAS  PubMed  Google Scholar 

  • Takata H, Uchiyama S, Nakamura N, Nakashima S, Kobayashi S, Sone T, Kimura S, Lahmers S, Granzier H, Labeit S, Matsunaga S, Fukui K (2007) A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cell 12:269–284

    Article  CAS  Google Scholar 

  • Telenius H, Devos D, Blennow E, Willat LR, Ponder BAJ, Carter NP (1993) Chromatid contamination can impair the purity of flow-sorted metaphase chromosomes. Cytometry 14(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Tiersch TR, Chandler RW (1989) Chicken erythrocytes as an internal reference for analysis of DNA content by flow cytometry in grass carp. Trans Am Fish Soc 118(6):713–717

    Article  Google Scholar 

  • Trask B, van den Engh G, Gray J (1989) Inheritance of chromosome heteromorphisms analysed by high-resolution bivariate flow karyotyping. Am J Hum Genet 45(5):753–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T, Takao T, Matsunaga S, Fukui K (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280:16994–17004

    Article  CAS  PubMed  Google Scholar 

  • Vindeløv LL, Christensen IJ, Nissen NI (1983) Standardization of high‐resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3(5):328–331

    Article  PubMed  Google Scholar 

  • Vláčilová K, Ohri D, Vrána J, Číhalíková J, Kubaláková M, Kahl G, Doležel J (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosom Res 10(8):695–706

    Article  Google Scholar 

  • Wang ML, Leitch AR, Schwarzacher T, Heslop-Harrison JS, Moore G (1992) Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes. Nucleic Acids Res 20:1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker RM, Massaro EJ, Sanders KM, Degn LL, Boyes WK (2010) Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry A 77(7):677–685

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha .

Editor information

Editors and Affiliations

Glossary

Allopolyploid

Polyploidy with more than one basic set of chromosomes

Apoptosis

Biological event of program cell death observed in multicellular organism

Autofluorescence

Intrinsic property of some biomolecules that emits fluorescence after excitation with light

B chromosome

Extra-small chromosomes over standard set of chromosomes

Chromosomal aberrations

Structural or numerical changes of chromosome

Chromosome painting

Chromosomal in situ hybridization with multiple sequence-specific fluorescent probes

Cytogenetics

Branch of genetics that deals with the study of structural and functional aspect of the cell, predominantly the chromosomes

Cytophotometry

The analysis of cellular content with the help of an instrument called cytophotometer

Deletion

Loss of a segment of a chromosome

DNA library

Collection of DNA fragments of an organism that was cloned into vectors

Flow cytometry

Laser-based biophysical technique to study optical properties of cells in liquid stream

Fluorescence in situ hybridization (FISH)

Modern technique used for detecting and locating a specific DNA sequence on a chromosome using probe

Fluorochrome

Chemical molecules that absorbed a particular wavelength of light, get excited and reemit light of higher wavelength in the form of fluorescent

Genetic marker

Unique DNA sequence used in molecular mapping

Genome

Complete set of DNA in an organism

PCR

Polymerase chain reaction

Probes

Small nucleic acid sequence (DNA or RNA) or monoclonal antibodies or fluorochrome-conjugated antibodies used for detection of specific molecule

Sex chromosome

Chromosomes responsible for the determination of sex of an organism

SSC

The light scattered 90° to the incident laser beam as the cell flow through the flow cytometer

Translocation

A chromosomal aberration that occurred due to the rearrangement of chromosomal parts in between two non-homologous chromosomes

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Halder, M., Nath, S., Jha, S. (2017). Flow Cytometry and Its Utility. In: Bhat, T., Wani, A. (eds) Chromosome Structure and Aberrations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3673-3_5

Download citation

Publish with us

Policies and ethics