Skip to main content

An Example of Physical Interest

  • Chapter
  • First Online:
Quantum Isometry Groups

Part of the book series: Infosys Science Foundation Series ((ISFM))

  • 723 Accesses

Abstract

This chapter is devoted to the quantum isometry group of the finite geometry of the Connes-Chamseddine picture of the Standard Model. We begin with some generalities on real \(C^*\) algebras, followed by a brief discussion in the finite noncommutative space of the Connes-Chamseddine model. Then we compute the quantum isometry group of the corresponding spectral triple and also discuss some physical significance of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Connes, A., Lott, J.: Particle models and noncommutative geometry, Recent advances in field theory (Annecy- le- Vieux, 1990). Nuclear Phys. B. Proc. Suppl 18B(1990), 29–47 (1991)

    Article  Google Scholar 

  3. Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys 182, 155–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chamseddine, A.H., Connes, A.: Universal formula for noncommutative geometry actions: unification of gravity and the Standard Model. Phys. Rev. Lett. 77, 4868 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chamseddine, A.H., Connes, A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504, 19 (2006)

    Google Scholar 

  7. Chamseddine, A.H., Connes, A.: Inner fluctuations of the spectral action. J. Geom. Phys 57(1), 1–21 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys 11(6), 991–1089 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Connes, A.: Noncommutative geometry and the standard model with neutrino mixing. J. High. Energ. Phys. 11, 081 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chamseddine, A.H., Connes, A.: Why the standard model. J. Geom. Phys. 58(1), 38–47 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chamseddine, A.H., Connes, A.: Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I. Fortschr. Phys. 58(6), 553–600 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lizzi, F., Mangano, G., Miele, G., Sparano, G.: Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories. Phys. Rev. D 55, 6357–6366 (1997)

    Article  MathSciNet  Google Scholar 

  13. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, 55 American Mathematical Society, Providence. RI, Hindustan Book Agency, New Delhi (2008)

    Google Scholar 

  14. Connes, A.: On the foundation of noncommutative geometry. The Unity of Mathematics. Progress in Mathematics, vol. 224, pp. 173–204. Birkhauser, Boston (2006)

    Google Scholar 

  15. Barrett, J.W.: A Lorentzian version of the noncommutative geometry of the standard model of particle physics. J. Math. Phys. 48, 012303 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chamseddine, A.H., Connes, A.: Resilience of the spectral standard model. JHEP 1209, 104 (2012)

    Article  MathSciNet  Google Scholar 

  17. Devastato, A., Lizzi, F., Martinetti, P.: Grand Symmetry. Spectral Action, and the Higgs mass. JHEP 1, 042 (2014)

    Google Scholar 

  18. van Suijlekom, W.D.: Noncommutative Geometry and Paricle Physics. Springer, Mathematical Physics Studies (2015)

    Google Scholar 

  19. van den Broek, T., van Suijlekom, W.D.: Supersymmetric QCD from noncommutative geometry. Phys. Lett. B 699(1–2), 119–122 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Boeijink, J., van Suijlekom, W.D.: The noncommutative geometry of Yang Mills fields. J. Geom. Phys. 61, 1122–1134 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. van den Dungen, K., van Suijlekom, W.D.: Electrodynamics from noncommutative geometry. J. Noncommut. Geom. 7, 433–456 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. van den Broek, T., van Suijlekom, W.D.: Going beyond the standard model with noncommutative geometry. J. High Energy Phys. 1(3), 12 (2013)

    MATH  MathSciNet  Google Scholar 

  23. Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Inner fluctuations in noncommutative geometry without the first order condition. J. Geom. Phys. 73, 222–234 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification. J. High. Energ. Phys. 132 (2013)

    Google Scholar 

  25. Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Grand unification in the spectral Pati-Salam model. J. High. Energ. Phys. 11, 011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Beenakker, W., van den Broek, T., van Suijlekom, W.D.: Supersymmetry and Noncommutative Geometry. Springer Brief in Mathematical Physics, vol. 9. Springer (2016)

    Google Scholar 

  27. van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost commutative space time. Rev. Math. Phys. 24(9), 1230004 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Connes, A.: Noncommutative differential geometry and the structure of space-time. In: Huggett, S.A., et al. (eds.) Proceedings of the Symposium on Geometry, pp. 49–80. Oxford Univ. Press, Oxford, UK (1998)

    MATH  Google Scholar 

  29. Kastler, D.: Regular and adjoint representation of \(SL_q(2)\) at third root of unit. CPT internal report (1995)

    Google Scholar 

  30. Coquereaux, R.: On the finite dimensional quantum group \(M_3\oplus (M_{2|1}(\Lambda ^2))_0\). Lett. Math. Phys. 42, 309–328 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Dabrowski, L., Nesti, F., Siniscalco, P.: A finite quantum symmetry of \(M(3,\mathbb{C}),\) Int. J. Mod. Phys. A 13, 4147–4162 (1998)

    Article  MATH  Google Scholar 

  32. Bhowmick, J., D’Andrea, F., Dabrowski, L.: Quantum isometries of the finite noncommutative geometry of the standard model. Commun. Math. Phys. 307, 101–131 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Bhowmick, J., D’Andrea, F., Das, B., Dabrowski, L.: Quantum gauge symmetries in noncommutative geometry. J. Noncommutative Geom. 8(2), 433–471 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Goswami, D.: Quantum isometry group for spectral triples with real structure. SIGMA 6, 007 (2010)

    MATH  MathSciNet  Google Scholar 

  35. Banica, T., Vergnioux, R.: Invariants of the half-liberated orthogonal group. Ann. Inst. Fourier (Grenoble) 60(6), 2137–2164 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Goodearl, K.R.: Notes on real and complex \( C^* \) algebras. Shiva Mathematical Series, Book 5, Birkhauser, Boston (1980)

    Google Scholar 

  37. Fukuda, Y., et al.: (Super-Kamiokande Collaboration), Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)

    Article  Google Scholar 

  38. Ahmad, Q.R., et al.: (SNO Collaboration), Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89, 011301 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd

About this chapter

Cite this chapter

Goswami, D., Bhowmick, J. (2016). An Example of Physical Interest. In: Quantum Isometry Groups. Infosys Science Foundation Series(). Springer, New Delhi. https://doi.org/10.1007/978-81-322-3667-2_9

Download citation

Publish with us

Policies and ethics