Skip to main content

Some Solutions of Generalised Variable Coefficients KdV Equation by Classical Lie Approach

  • Conference paper
  • First Online:
Applied Analysis in Biological and Physical Sciences

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 186))

  • 880 Accesses

Abstract

We investigate the symmetries of the generalised KdV Equation by using the theory of Lie classical method. The similarities obtained are utilized to reduce the order of nonlinear partial differential equation. Some solutions of reduced differential equation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, H., Lee, H.: Korteweg-de Vries equation of ion acoustic surface waves. Phys. Plasmas 6, 3422–3424 (1999)

    Article  Google Scholar 

  2. Satsuma, J., Kaup, D.J.: A B\(\ddot{a}\)cklund transformation for a higher order Korteweg-de Vries equation. J. Phys. Soc. Jpn. 43, 692–726 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, S.: Application of exp-function method to a KdV equation with variable coefficients. Phys. Lett. A 365, 448–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Singh, K., Gupta, R.K.: On symmetries and invariant solutions of a coupled KdV system with variable coefficients. Int. J. Math. Math. Sci. 23, 3711–3725 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gupta, R.K., Singh, K.: Symmetry analysis and some exact solutions of cylindrically symmetric null fields in general relativity. Commun. Nonlinear Sci. Numer. Simul. 16, 4189–4196 (2011)

    Article  MATH  Google Scholar 

  6. Abd-el-Malek, M.B., Helal, M.M.: Group method solutions of the generalized forms of Burgers, Burgers-KdV and KdV equations with time-dependent variable coefficients. Acta Mech. 221, 281–296 (2011)

    Article  MATH  Google Scholar 

  7. Yan, Z.: A new auto-B\(\ddot{a}\)cklund transformation and its applications in finding explicit exact solutions for the general KdV equation. Chin. J. Phys. 40, 113–120 (2002)

    Google Scholar 

  8. Lie, S.: Vorlesungen uber. Differentialgliechurger mit Bekannten Infinite-simalen Transformationen, Teuber, Leipzig (1891)

    Google Scholar 

  9. Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. 6, 328–368 (1881)

    MATH  Google Scholar 

  10. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  11. Arrigo, D.J., Beckham, J.R.: Nonclassical symmetries of evolutionary partial differential equations and compatibility. J. Math. Anal. Appl. 289, 55–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217–1231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, M.L., Zhang, J.L., Li, X.Z.: The \(\frac{G^{\prime }}{G}\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  14. Bansal, A., Gupta, R.K.: Modified \(\frac{G^{\prime }}{G}\)-expansion method for finding exact wave solutions of the coupled KleinG-ordon-Schr\(\ddot{o}\)dinger equation. Math. Methods Appl. Sci. 35, 1175–1187 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gupta, R.K., Bansal, A.: Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients. Nonlinear Dyn. 71, 1–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bluman, G.W., Anco, S.C.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  17. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Applied Mathematical Sciences, vol. 81. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  18. Bruz\(\acute{o}\)n, M.S., Gandarias, M.L., Camacho, J.C.: Classical and nonclassical symmetries for a Kuramoto Sivashinsky equation with dispersive effects. Math. Methods Appl. Sci. 30, 2091–2100 (2007)

    Google Scholar 

  19. Gandarias, M.L., Bruz\(\acute{o}\)n, M.S.: Solutions through nonclassical potential symmetries for a generalized inhomogeneous nonlinear diffusion equation. Math. Methods Appl. Sci. 31, 753–767 (2008)

    Google Scholar 

  20. Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205, 396–402 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Molati, M., Ramollo, M.P.: Symmetry classification of the Gardner equation with time-dependent coefficients arising in stratified fluids. Commun. Nonlinear Sci. Numer. Simul. 17, 1542–1548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wazwaz, A.M., Triki, H.: Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 1122–1126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, W., Zhao, Y.-M.: Exact solutions for a generalized KdV equation with time-dependent coefficients and K(m, n) equation. Appl. Math. Sci. 6, 2203–2217 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Wazwaz, A.M.: The tanh method for compact and non compact solutions for variants of the KdV-Burger equations. Phys. D: Nonlinear Phenom. 213, 147–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

    Article  MATH  Google Scholar 

  26. El-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fractals 31, 840–852 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Kumar, R., Bansal, A., Gupta, R.K. (2016). Some Solutions of Generalised Variable Coefficients KdV Equation by Classical Lie Approach. In: Cushing, J., Saleem, M., Srivastava, H., Khan, M., Merajuddin, M. (eds) Applied Analysis in Biological and Physical Sciences. Springer Proceedings in Mathematics & Statistics, vol 186. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3640-5_19

Download citation

Publish with us

Policies and ethics