Skip to main content

Predictability of Brain and Decision Making

  • Chapter
  • First Online:
Decision Making and Modelling in Cognitive Science
  • 1119 Accesses

Abstract

The central issue in brain function is to understand how the internalization of the properties of the external world is realized within an internal functional space. By the term “internalization” of the properties, we mean the ability of the nervous system to fracture external reality into sets of sensory messages; the next task of this process is to simulate such reality in brain reference frames. As stated earlier, the concept of functional geometry has been proposed by Pellionisz and Llinas, and then developed further by Roy and Llinas as probabilistic dynamic geometry to understand the internal functional space and its correspondence with the external world. A central challenge concerning present-day neuroscience is that of understanding the rules for embedding of ‘universals’ into intrinsic functional space. The arguments go as follows: “if functional space is endowed with stochastic metric tensor properties, then there will be a dynamic correspondence between the events in the external world and their specification in the internal space.” The predictability of the brain is closely related to dynamic geometry where Bayesian probability has been shown to be necessary for understanding this predictability. In Bayesian statistics, prior knowledge about the system is assumed. The fundamental question regarding the CNS function is “where is the origin of such prior knowledge”, and the answer is basically simple: the morpho-functional brain network is initially inherited and then honed by use. In fact, the origin of a Bayesian framework can be traced to Helmholtz’s (1867) idea of perception. It was Helmholtz who first realized that retinal images are ambiguous and prior knowledge is necessary to account for visual perception.

The question that immediately arises is whether the biological Phenomena themselves dictate or justify the theory’s mathematical structures. The alternative is that the beauty, versatility, and power of mathematical approach may have led its aficionado to find areas of application in the spirit of the proverbial small boy with a hammer, who discovers an entire world in need of pounding.

—Perkel (1990)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbib M.A.(2007) Clinical Neuropsychiatry 4(5-6): 208-222

    Google Scholar 

  • Berstein, N.A. (1967); The coordination and regulation of the movement; Oxford, U.K., Pergamon Press.

    Google Scholar 

  • Bhattacharya, S., Gelfand, A.E. & Holsinger, K.E. (2007); Stat. Comput.;17, 193-208.

    Google Scholar 

  • Clark A, Chalmers D (1998). Analysis; 58:7–19.

    Google Scholar 

  • Clark, A. (2008); Supersizing the Mind; Embodiment, Action, and Cognitive Extension, Oxford University Press.

    Google Scholar 

  • Cox, R.T. (1946) Am.Journ.Phys., 17, 1-13.

    Google Scholar 

  • Diedrichsen Jörn et al (2009) A probabilistic MR atlas of the human cerebellum; doi:10.1016/j. neuroimage.2009.01.045

    Google Scholar 

  • Die d Richen, Reza Shadmeher et al; (2002); TICH,834.

    Google Scholar 

  • Emauael, T & Jordon, I. Michael (2002); Nature Neuroscience 5, 1226 – 1235.

    Google Scholar 

  • Erimaki, S. & Christakos, C. N. (2008); Coherent motor unit rhythms in the (6-10 Hz) range during time-varying voluntary muscle contractions: Neural mechanism and relation to Rhythmical Motor Control,Neurolophysiol,99, 473-483.

    Google Scholar 

  • Evan Thompson and Mog Stapleton (2008) Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories; Springer online, 20 December.

    Google Scholar 

  • Farmer, S. F. (1998). Journal of Physiology 509(1), 3-14; ibid; Farmer, S,F. (2004); Control of human movement; The journ. of Physiology, 517(1); Article first published online 8 Sep.; (2004).

    Google Scholar 

  • Freedman, D.A. (1995); Some issues in the foundation of statistics; Found.Sci., 1, 19-83.

    Google Scholar 

  • Goldman, MS (2000); “Computational Implications of Activity-dependent neuronal processes; Harvard Univ”; Ph.D. Thesis.

    Google Scholar 

  • Goodman, D.A. & Kelso, J.A.(1983); Exploring the functional significance of physiological tremor: a biospectroscopic approach; Exp. Brain Res., 49, 419-431.

    Google Scholar 

  • Greene, P.H. (1982); Why it is easy to control your arms?; Journ. Motor Behav., 14, 260-286.

    Google Scholar 

  • Grillner Hamburger Victor (1963) Quarterly Rev. of Biol.,39, 342-365.

    Google Scholar 

  • Heijden, J. Van der, Shedmehr Reza; (1992); TICS-834.

    Google Scholar 

  • Helmholtz, H. Von (1855/1903); “Ueber das Sehen des Menschen’’, in Vortra « ge und Reden (Braunschweig: Vieweg); 85 – 117; ibid; Helmholtz, Von Hermann (1867); “(Handbuch der physiologischen Optik”, Leipzig: Voss: “Treatise on Physiological Optics” (1920-25);ibid; (1878/1903); “Die Tathsachen in der Wahrnehmung’’, in Vortra «ge und Reden (Braunschweig: Vieweg), 213 – 247.

    Google Scholar 

  • Hommel, B., Jochen Müsseler, J. et.al. (2001); Behavioral and Brain Sciences; 24, 849–937.

    Google Scholar 

  • Jaynes, E.T. (1986) Bayesian Methods; General background: Cambridge. U.K., Cambridge University Press.

    Google Scholar 

  • Joliot J.M., Ribary U., & Llinás R. (1994) Proc. Natl Acad. Sci.; USA. 1994; 91:11;748–751. (doi:10.1073/pnas.91.24.11748).

    Google Scholar 

  • Kondepudi, D. & Prigogine, I. (1998) Modern Thermodynamics, Wiley, New York.

    Google Scholar 

  • Körding, K.P, Tenenbaum, J.B & Shadmehr, R. (2007); Nature Neuroscience, 10, 779-786.

    Google Scholar 

  • Kӧrding, K.P. (2007); Review, Science, 318, 606-610.

    Google Scholar 

  • Klagge, J.C. (1999); Wittgenstein on Non-mediative causality; Journ. History of Philosophy; 37(4), 653-667.

    Google Scholar 

  • Livesey, P. J. (1986)Learning and Emotion: A Biological Synthesis; Vol.1of Evolutionary Processe; Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Llinás, Rodolfo (1987); Mindness as a functional state of the brain: inMind waves”; (eds.) C. Blackmore & S. A. Greenfield (Eds.), pp. 339–358). Oxford, England:

    Google Scholar 

  • Llinás R. R. (1988) Science. 242; pp.1654–1664.

    Google Scholar 

  • Llinas, R., Leznik, E. & Makarenko, V. (2004) IEE. J. 29; pp. 631-639.

    Google Scholar 

  • Mackay, D.J.C. (2003); Information Theory, Inference and learning algorithms; Cambridge Univ. Press.

    Google Scholar 

  • Makarenko, V. & Llina‘s, R. (1998) Proc .Natl. Acad. Sci. U S A,  95, pp. 15747–15752.

    Google Scholar 

  • Markus F., Peschl, M.F. & Riegler, A.(1999); Understanding Representation in the Cognitive Sciences; (Eds: A. Riegler, M. Peschl, & A. von Stein); Kluwer Academic/Plenum Publishers, New York, 1.

    Google Scholar 

  • Maturana, H.R. & Varela F.J. (1980); Autopoiesis and cognition: The realization of the living, Springer.

    Google Scholar 

  • Maturana, U. (2000); Steps to an Ecology of Mind; University of Chicago Press, Chicago.

    Google Scholar 

  • Moshe Bar (2009) Predictions: a universal principle in the operation of the human brain; Trans. of Royal Society B; Royal society publishing org. 30March 2009. DOI: 10.1098/rstb.2008.0321

    Google Scholar 

  • Neumann J. Von (1996); Mathematical foundation of Quantum Mechanics; Translation from German edition.

    Google Scholar 

  • Pellionisz, A. & Llinás, R. (1979 ; Neuroscience, 4, 323-348.

    Google Scholar 

  • Pellionisz, A. & Llinás,R. (1985) Neuroscience, 16: 245-273.

    Google Scholar 

  • Perkel D.H. (1990) in response to How brains make chaos in order to make sense of the world Neurocomputing 2 Ed by J.M Anderson et al MIT Press, Cambridge, MA, p. 406

    Google Scholar 

  • Prigogine, I. & Kondepudi, D. (1998): Modern Thermodynamics: From Heat Engines to Dissipative Structure; Wiley, Chichester.

    Google Scholar 

  • Rosenblatt, Julio, K. (2000) Autonomous Robots; 9(1), 17-25, Kluwer Academic Publishers.

    Google Scholar 

  • Roy, S. & Llinás, R. (2008) Dynamic Geometry, Brain function modelling and Consciousness; Eds. Banerjee, R. & Chakravorty, B.K.; Progress in Brain research; 168, 133(ISSN-0079-6123);

    Google Scholar 

  • Roy, S. & Llinás, R. (2012) Role of Noise in Brain function; Science; Image in action; eds. Z. Bertrand et al., World Scientific Publishers, Singapore; pp 34-44.

    Google Scholar 

  • Ruiz-Mirazo, K. Moreno, A. (2004) Artificial Life, 10:235–259.

    Google Scholar 

  • Stanek E., Cheng S. (2014); Neuroscience; 1;145-59.

    Google Scholar 

  • Stanek IV, E., Steven Cheng, Jun Takatoh, Bao-Xia Han, and Fan Wang, (2014) Monosynaptic Premotor Circuit Tracing Reveals Neural Substrates 4 for Oro-motor Coordination;Elife (2014).

    Google Scholar 

  • Tanji, J. & Shima, K. (1994) Nature; 371:413-16.

    Google Scholar 

  • Thompson E. (2007) Mind in life:Biology, Phenomenology, and the sciences ofMind (pp 4-47). Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Valbo, A. B. & Wessberg, J. (1993); Journal of Physiology; 469, 673—691.

    Google Scholar 

  • Varela, A.B. et al (1974) Biosystems; 5(4), 187-195. (Elsevier).

    Google Scholar 

  • Varela, F.J. (1979) Principles of Biological Autonomy (New York: Elsevier North Holland).

    Google Scholar 

  • Varela, F.J. (1997) Brain Cognition, 34:72–87.

    Google Scholar 

  • Wessberg, J. & Valbo, A. B. (1995); Journal of Physiology; 485, 271—282;

    Google Scholar 

  • Wessberg, J. & Valbo, A. B. (1996); Journal of Physiology; 493, 895—908.

    Google Scholar 

  • Wessberg, J. & Kakuda, N. (1999); Journal of Physiology; 517, 273—285; ibid; Wessberg, J. & Kakuda, N. (2004); Journal of Physiology; 517; issue 1; published on line, 8 Sep.

    Google Scholar 

  • Wheeler, M. E., Paterson, S.E. (2008); Journal of Conitive Neuroscience;20(12), 2211-2225.

    Google Scholar 

  • Wittgenstein, L. (1913) On logic and How to do it? (original); The Cambridge review, Vol 34.

    Google Scholar 

  • Wittgenstein, L., Klagge, J.C. et al (1997); Cátedra;41.

    Google Scholar 

  • Wittgenstein L., (2001) Biography and Philosophy; Cambridge University Press.

    Google Scholar 

  • Yonas A. (2003) Development of space perception, in Encyclopaedia of cognitive science.:[ed. Anand R.], Macmillan; London, UK: pp. 96–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisir Roy .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Roy, S. (2016). Predictability of Brain and Decision Making. In: Decision Making and Modelling in Cognitive Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3622-1_3

Download citation

Publish with us

Policies and ethics