Skip to main content

Abstract

Optical coherence tomography (OCT) is a non invasive, non contact transpupillary interferometric technique for real time in vivo imaging of retinal microstructures. It is equivalent to ultrasound B-mode imaging with use of light instead of sound. Spectral Domain-OCT utilizes a broadband optical source and a processing unit, spectrometer. Fourier domain transformation utilizes an array of detectors in place of a moving mirror, to acquire A-scan concurrently. This increases the scanning speed to about 200 times faster than time domain OCT. The high sampling density hence achieved produces high-quality individual B-scan images. With the advent of swept source OCT and enhanced depth imaging protocol even choroid can be imaged. OCT angiography identifies retinal circulation using the intrinsic motion of the blood cells in vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C et al (2004) Ultrahigh-resolution optical coherence tomography of the monkey fovea: identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Drexler W, Sattmann H, Hermann B, Ko TH, Stur M et al (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121:695–706

    Article  PubMed  Google Scholar 

  • Duker JS, Waheed NK, Goldman D (2013) Handbook of retinal OCT: optical coherence tomography. Elsevier Health Sciences, London

    Google Scholar 

  • Fernandez EJ, Hermann B, Povazay B, Unterhuber A, Sattmann H et al (2008) Ultrahigh- resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express 16:11083–11094

    Article  PubMed  Google Scholar 

  • Hogan JA, Alvarado MJ, Weddell JE (1971) Histology of the human eye. An atlas and textbook. WB Saunders, Philadelphia

    Google Scholar 

  • Jain A, Saxena S, Khanna VK et al (2013) Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Mol Vis 19:1760–1768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko TH, Fujimoto JG, Duker JS, Paunescu LA, Drexler W et al (2004) Comparison of ultrahigh- and standard- resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111:2033–2043

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs W, Krebs I (1991) Primate retina and choroid. In: Atlas of fine structure in man and monkey. Springer, New York

    Google Scholar 

  • Lu RW, Curcio CA, Zhang Y, Zhang QX, Pittler SJ et al (2012) Investigation of the hyper-reflective inner/outer segment band in optical coherence tomography of living frog retina. J Biomed Opt 17:060504

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumbroso B, Rispoli M (2009) Guide to interpreting spectral domain optical coherence tomography, 2nd edn. chapter 4. Jaypee highlights. pp 33–34

    Google Scholar 

  • Maheshwary AS, Oster SF et al (2010) The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol 150:63–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehalow AK, Kameya S, Smith RS et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12:2179–2189

    Google Scholar 

  • Mrejen S, Spaide RF (2013) OCT: Imaging of choroid and beyond. Surv Ophthalmol 58:387–429

    Article  PubMed  Google Scholar 

  • Murakami T, Nishijima K, Akagi T, Uji A, Horii T et al (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53:1506–1511

    Article  PubMed  Google Scholar 

  • Oishi A, Hata M, Shimozono M, Mandai M, Nishida A, Kurimoto Y (2010) The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am J Ophthalmol 150:27–32

    Article  PubMed  Google Scholar 

  • Omri S, Omri B et al (2010) The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol 4:183–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulerkhoff D, Heimes D, Spital G (2015) OCT ANGIOGRAPHY is this future of macular diagnosis? Klin Monbl Augenheilkd 232:1069–1076

    Google Scholar 

  • Podoleanu GA (2012) Optical coherence tomography. J Microsc 10:1365–2818

    Google Scholar 

  • Puche N, Querques G, Benhamou N, Tick S, Mimoun G et al (2010) High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol 94:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Ryan SJ (2013) Retina, 5th edn. Elsevier, Health Sciences, London

    Google Scholar 

  • Sharma SR, Saxena S et al (2014) The association of grades of photoreceptor inner segment- ellipsoid band disruption with severity of retinopathy in type 2 diabetes mellitus. J Case Rep Stud 2:205

    Google Scholar 

  • Sharma SR, Saxena S, Srivastav K, Shukla RK, Mishra N et al (2015) Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations. Clinical and Experimental Ophthalmology, 43:429–436

    Google Scholar 

  • Spaide RF (2012) Questioning optical coherence tomography. Ophthalmology 119:2203–2204

    Article  PubMed  Google Scholar 

  • Spaide RF, Curcio CA (2011b) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaide RF, Koizumi H, Poconni ML (2008) Enhanced depth imaging spectral domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  • Spaide RF, Klancnik JM, Cooney MJ (2014) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:E1–E6

    Google Scholar 

  • Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A et al (2006) Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 47:5522–5528

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I et al (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Staurenghi G, Sadda S et al (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. The IN.OCT consensus. Ophthalmology 121:1572–1578

    Article  PubMed  Google Scholar 

  • Wei J, Lumbroso B, Jang B, Davis J, inventors; Optovue, Inc., assignee (2012) Computer-aided diagnosis of retinal pathologies using frontal en-face views of optical coherence tomography. United States patent application US 13/360,503

    Google Scholar 

  • Yamauchi Y, Yagi H, Usui Y et al (2011) Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography. Clin Ophthalmol 5:1649–1653

    Google Scholar 

  • Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA et al (2005) Adaptive-optics optical coherence tomography for high- resolution and high- speed 3D retinal in vivo imaging. Opt Express 13:8532–8546

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Saxena MS,FRCSEd,FRCS,FRCOphth,FAICO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Sinha, S., Phadikar, P., Saxena, S. (2017). Optical Coherence Tomography: A Primer. In: Meyer, C., Saxena, S., Sadda, S. (eds) Spectral Domain Optical Coherence Tomography in Macular Diseases. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3610-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3610-8_1

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3608-5

  • Online ISBN: 978-81-322-3610-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics