Skip to main content

Ionizing Radiation and Male Fertility

Abstract

Exposure to ionizing radiation (IR) is becoming more common in the medical field for disease diagnoses and cancer treatment. In addition to patients undergoing treatment, IR exposure also poses a big threat to health professionals. The majority of medical investigations require radiographic testing to diagnose the disease followed by treatment, which in case of cancer patients may also require radiotherapy. Although all living creatures are at the risk of damage in response to ionizing radiation, the mammalian testes are much more sensitive to ionizing radiation. In man and in majority of animals, the testes lie outside the body and are susceptible to radiation damage (Abuelhija et al. 2013). Damage to the testes is directly proportional to the dose and time of exposure to artificial radiation or treatment. Evidence exists for sperm count reduction after treatment with low-dose testis irradiation. Moderate- to high-dose irradiation can lead to prolonged drastic decline in sperm count or even azoospermia (Abuelhija et al. 2013). The human testes appear to be more sensitive, and the recovery of spermatogenesis after radiotherapy is significantly delayed compared to most other rodents (Meistrich and Samuels 1985). This delay suggests that during the treatment period, spermatogonial stem cells become arrested at a point of their differentiation; however, the underlying mechanism of the spermatogenesis arrest and subsequent recovery in human is not known. This raises an important question about the posttreatment fertility of the patients and also the consequences of IR exposure on the reproductive health in medical professionals.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abuelhija M, Weng CC, Shetty G, Meistrich ML. Rat models of post-irradiation recovery of spermatogenesis: interstrain differences. Andrology. 2013;1:206–15.

    Article  CAS  PubMed  Google Scholar 

  • Bahadur G, Ozturk O, Muneer A, Wafa R, Ashraf A, Jaman N, Patel S, Oyede AW, Ralph DJ. Semen quality before and after gonadotoxic treatment. Hum Reprod. 2005;20:774–81.

    Article  CAS  PubMed  Google Scholar 

  • Brent RL. Utilization of developmental basic science principles in the evaluation of reproductive risks from pre- and postconception environmental radiation exposures. Teratology. 1999;59:182–204.

    Article  CAS  PubMed  Google Scholar 

  • Bruce WR, Furrer R, Wyrobek AJ. Abnormalities in the shape of murine sperm after acute testicular x-irradiation. Mutat Res. 1974;23:381–6.

    Article  CAS  PubMed  Google Scholar 

  • Bujan L, Walschaerts M, Moinard N, Hennebicq S, Saias J, Brugnon F, Auger J, Berthaut I, Szerman E, Daudin M, Rives N. Impact of chemotherapy and radiotherapy for testicular germ cell tumors on spermatogenesis and sperm DNA: a multicenter prospective study from the CECOS network. Fertil Steril. 2013;100:673–80.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, De K, Basu SK, Das AK. Alteration of spermatozoal structure and trace metal profile of testis and epididymis of rat under chronic low-level X-ray irradiation. Biol Trace Elem Res. 1994;41:305–19.

    Article  CAS  PubMed  Google Scholar 

  • Clifton DK, Bremner WJ. The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J Androl. 1983;4:387–92.

    Article  CAS  PubMed  Google Scholar 

  • Delic JI, Hendry JH, Morris ID, Shalet SM. Dose and time relationships in the endocrine response of the irradiated adult rat testis. J Androl. 1986;7:32–41.

    Article  CAS  PubMed  Google Scholar 

  • Di Bisceglie C, Bertagna A, Composto ER, Lanfranco F, Baldi M, Motta G, Barberis AM, Napolitano E, Castellano E, Manieri C. Effects of oncological treatments on semen quality in patients with testicular neoplasia or lymphoproliferative disorders. Asian J Androl. 2013;15:425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Plessis SS, Agarwal A, Sabanegh Jr ES. Male infertility: a complete guide to lifestyle and environmental factors. New York: Springer; 2014. ISBN 13: 978-1493910397.

    Google Scholar 

  • Dym M, Clermont Y. Role of spermatogonia in the repair of the seminiferous epithelium following x-irradiation of the rat testis. Am J Anat. 1970;128:265–82.

    Article  CAS  PubMed  Google Scholar 

  • Eberhard J, Stahl O, Giwercman Y, Cwikiel M, Cavallin-Stahl E, Lundin KB, Flodgren P, Giwercman A. Impact of therapy and androgen receptor polymorphism on sperm concentration in men treated for testicular germ cell cancer: a longitudinal study. Hum Reprod. 2004;19:1418–25.

    Article  CAS  PubMed  Google Scholar 

  • Ehmcke J, Schlatt S. A revised model for spermatogonial expansion in man: lessons from non-human primates. Reproduction. 2006;132:673–80.

    Article  CAS  PubMed  Google Scholar 

  • Erickson BH, Hall GG. Comparison of stem-spermatogonial renewal and mitotic activity in the gamma-irradiated mouse and rat. Mutat Res. 1983;108:317–35.

    Article  CAS  PubMed  Google Scholar 

  • Foppiani L, Schlatt S, Simoni M, Weinbauer GF, Hacker-Klom U, Nieschlag E. Inhibin B is a more sensitive marker of spermatogenetic damage than FSH in the irradiated non-human primate model. J Endocrinol. 1999;162:393–400.

    Article  CAS  PubMed  Google Scholar 

  • Gandini L, Sgro P, Lombardo F, Paoli D, Culasso F, Toselli L, Tsamatropoulos P, Lenzi A. Effect of chemo- or radiotherapy on sperm parameters of testicular cancer patients. Hum Reprod. 2006;21:2882–9.

    Article  CAS  PubMed  Google Scholar 

  • Haines G, Marples B, Daniel P, Morris I. DNA damage in human and mouse spermatozoa after in vitro-irradiation assessed by the comet assay. Adv Exp Med Biol. 1998;444:79–91; discussion 92–3.

    Article  CAS  PubMed  Google Scholar 

  • Hansen PV, Trykker H, Svennekjaer IL, Hvolby J. Long-term recovery of spermatogenesis after radiotherapy in patients with testicular cancer. Radiother Oncol. 1990;18:117–25.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Kamidono S, Fujisawa M. Fertility after high-dose chemotherapy for testicular cancer. Urology. 2004;63:137–40.

    Article  PubMed  Google Scholar 

  • Jacob A, Barker H, Goodman A, Holmes J. Recovery of spermatogenesis following bone marrow transplantation. Bone Marrow Transplant. 1998;22:277–9.

    Article  CAS  PubMed  Google Scholar 

  • Jegou B, Velez de la Calle JF, Bauche F. Protective effect of medroxyprogesterone acetate plus testosterone against radiation-induced damage to the reproductive function of male rats and their offspring. Proc Natl Acad Sci U S A. 1991;88:8710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamischke A, Kuhlmann M, Weinbauer GF, Luetjens M, Yeung CH, Kronholz HL, Nieschlag E. Gonadal protection from radiation by GnRH antagonist or recombinant human FSH: a controlled trial in a male nonhuman primate (Macaca fascicularis). J Endocrinol. 2003;179:183–94.

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Mcglynn KA, Mccorkle R, Zheng T, Erickson RL, Niebuhr DW, Ma S, Zhang Y, Bai Y, Dai L, Graubard BI, Kilfoy B, Barry KH, Zhang Y. Fertility among testicular cancer survivors: a case-control study in the U.S. J Cancer Surviv. 2010;4:266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Upadhya D, Salian SR, Rao SB, Kalthur G, Kumar P, Adiga SK. The extent of paternal sperm DNA damage influences early post-natal survival of first generation mouse offspring. Eur J Obstet Gynecol Reprod Biol. 2013a;166:164–7.

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Upadhya D, Uppangala S, Salian SR, Kalthur G, Adiga SK. Nuclear DNA fragmentation negatively affects zona binding competence of Y bearing mouse spermatozoa. J Assist Reprod Genet. 2013b;30:1611–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lampe H, Horwich A, Norman A, Nicholls J, Dearnaley DP. Fertility after chemotherapy for testicular germ cell cancers. J Clin Oncol. 1997;15:239–45.

    CAS  PubMed  Google Scholar 

  • Lancranjan I, Maicanescu M, Rafaila E, Klepsch I, Popescu HI. Gonadic function in workmen with long-term exposure to microwaves. Health Phys. 1975;29:381–3.

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Zhang H, Miao GY, Xie Y, Sun C, Di CX, Liu Y, Liu YY, Zhang X, Ma XF, Xu S, Gan L, Zhou X. Simulated microgravity conditions and carbon ion irradiation induce spermatogenic cell apoptosis and sperm DNA damage. Biomed Environ Sci. 2013;26:726–34.

    CAS  PubMed  Google Scholar 

  • Lord BI. Transgenerational susceptibility to leukaemia induction resulting from preconception, paternal irradiation. Int J Radiat Biol. 1999;75:801–10.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Tobari I, Yamada T. In vitro fertilization rate of mouse eggs with sperm after X-irradiation at various spermatogenetic stages. Mutat Res. 1985;142:59–63.

    Article  CAS  PubMed  Google Scholar 

  • Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100:1180–6.

    Article  CAS  PubMed  Google Scholar 

  • Meistrich ML, Samuels RC. Reduction in sperm levels after testicular irradiation of the mouse: a comparison with man. Radiat Res. 1985;102:138–47.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen CA. The study of hormonal aspects. Final progress report of AEC contract AT(45–1)-2225, task agreement 6. RLO-2225-2. U.S. Department of Energy; 1973.

    Google Scholar 

  • Pectasides D, Pectasides M, Farmakis D, Nikolaou M, Koumpou M, Kostopoulou V, Mylonakis N. Testicular function in patients with testicular cancer treated with bleomycin-etoposide-carboplatin (BEC(90)) combination chemotherapy. Eur Urol. 2004;45:187–93.

    Article  CAS  PubMed  Google Scholar 

  • Petersen PM, Skakkebaek NE, Rorth M, Giwercman A. Semen quality and reproductive hormones before and after orchiectomy in men with testicular cancer. J Urol. 1999;161:822–6.

    Article  CAS  PubMed  Google Scholar 

  • Ping P, Gu BH, Li P, Huang YR, Li Z. Fertility outcome of patients with testicular tumor: before and after treatment. Asian J Androl. 2014;16:107–11.

    Article  PubMed  Google Scholar 

  • Pinkel D, Gledhill BL, Van Dilla MA, Lake S, Wyrobek AJ. Radiation-induced DNA content variability in mouse sperm. Radiat Res. 1983;95:550–65.

    Article  CAS  PubMed  Google Scholar 

  • Pinon-Lataillade G, Viguier-Martinez MC, Touzalin AM, Maas J, Jegou B. Effect of an acute exposure of rat testes to gamma rays on germ cells and on Sertoli and Leydig cell functions. Reprod Nutr Dev. 1991;31:617–29.

    Article  CAS  PubMed  Google Scholar 

  • Rowley MJ, Leach DR, Warner GA, Heller CG. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.

    Article  CAS  PubMed  Google Scholar 

  • Sanders JE, Hawley J, Levy W, Gooley T, Buckner CD, Deeg HJ, Doney K, Storb R, Sullivan K, Witherspoon R, Appelbaum FR. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.

    CAS  PubMed  Google Scholar 

  • Searle AG, Beechey CV. Sperm-count, egg-fertilization and dominant lethality after X-irradiation of mice. Mutat Res. 1974;22:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Shah FJ, Tanaka M, Nielsen JE, Iwamoto T, Kobayashi S, Skakkebaek NE, Leffers H, Almstrup K. Gene expression profiles of mouse spermatogenesis during recovery from irradiation. Reprod Biol Endocrinol. 2009;7:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl O, Eberhard J, Jepson K, Spano M, Cwikiel M, Cavallin-Stahl E, Giwercman A. The impact of testicular carcinoma and its treatment on sperm DNA integrity. Cancer. 2004;100:1137–44.

    Article  PubMed  Google Scholar 

  • van Alphen MM, van de Kant HJ, de Rooij DG. Depletion of the spermatogonia from the seminiferous epithelium of the rhesus monkey after X irradiation. Radiat Res. 1988;113:473–86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Ahmad, G., Agarwal, A. (2017). Ionizing Radiation and Male Fertility. In: Gunasekaran, K., Pandiyan, N. (eds) Male Infertility. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3604-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3604-7_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3602-3

  • Online ISBN: 978-81-322-3604-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics