Skip to main content

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

Recent advancements in the synthesis of various nanomaterials of different sizes, shapes and functions have established nanotechnology as an indispensable technology for agriculture (Khot etal. 2012; Saharan etal. 2014). Materials which show unique properties linked to their size (ranging from 1 to 1000 nm at least in one dimension) are considered nanoparticles and deemed under nanotechnology (Buzea and Robbie 2007). Nanomaterials have some high value properties like high surface-to-volume ratio, more molecules/reactive groups on surface; prefer nano-encapsulation and are independent of gravity. These unique properties of nano materials offer a vital role in agriculture, especially in plant growth and protection. It is predicted that in coming decades the progress in agriculture will be expedited by nanotechnology. Though nanotechnology is less explored in agriculture in general, but substantial research has been done in crop protection (Park etal. 2006; Jo etal. 2009; Nair etal. 2010; Sharon etal. 2010; Ghormade etal. 2010; He etal. 2011; Lamsal etal. 2011; Kim etal. 2012; Perez-de-Luque etal. 2012; Jayaseelan etal. 2013; Wani and Ahmad 2013; Saharan etal. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 1:1–29

    Article  Google Scholar 

  • Bittelli M, Flury M, Campbell GS, Nichols EJ (2001) Reduction of transpiration through foliar application of chitosan. Agric For Meteorol 107:167–175

    Article  Google Scholar 

  • Brunel F, Gueddari NEE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356

    Article  CAS  PubMed  Google Scholar 

  • Buzea CPI, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  • Celik O, Akbuga J (2007) Preparation of superoxide dismutase loaded chitosan microspheres: characterization and release studies. Eur J Pharm Biopharm 66(1):42–47

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zou X, Liu Q, Wang F, Feng W, Wan W (2014) Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Prot 56:31–36

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manango’n E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nano Res 14:11–25

    Article  Google Scholar 

  • Dzung NA, Khanh VTP, Dung TT (2011) Research on impact of chitosan oligomeron biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84:751–755

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2010) Perspectives for nanobiotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  Google Scholar 

  • Guo Z, Chen R, Xing R, Liu S, Yu H, Wang P, Li C, Li P (2006) Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydr Res 341:351

    Article  CAS  PubMed  Google Scholar 

  • Hadrami AE, Adam LR, Hadrami IE, Daayf F (2010) Chitosan in plant Protection. Mar Drugs 8:968–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal M, Chauhan D, Sankararamakrishnan N (2012) Copper chitosan nanocomposite: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut Res 19:2055–2062

    Article  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmo schusesculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Khot L, Sankaran S, Maja J, Ehsani R, Schuster EW (2012) Application of nanomaterial in agricultural production and crop production: a review. J Crop Prod 35:64–70

    Article  CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on Cucumber and Pumpkin. Mycobiology 39(1): 26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerouge P (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulfated and acylated glucosamine oligosaccharides signal. Nature 344:781–784

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5582

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Bai Y, Song C, Zhu D, Song L, Zhang H, Dong X, Leng X (2010) The impact of arginine-modified chitosan–DNA nanoparticles on the function of macrophages. J Nano Res 12: 1637–1644

    Article  CAS  Google Scholar 

  • Ma Z, Yang L, Yan John H, Kennedy F, Meng X (2013a) Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym 94:272–277

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013b) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778

    Article  CAS  Google Scholar 

  • Meng X, Yang L, Kennedy JF, Tian S (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Perez-de-Luque A, Cifuentes Z, Beckstead JA, Sillero JC, Avila C, Rubio J, Ryan RO (2012) Effect of amphotericin B nanodisks on plant fungal diseases. Pest Manag Sci 68(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Reddy MV, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearun and improves seed quality. J Agric Food Chem 47: 1208–1216

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Khatik R, Choudhary MK, Mehrotra A, Jakhar S, Raliya R, Nallamuthu I and Pal A (2014) Nano-materials for plant protection with special reference to nano chitosan, In: Proceedings of the 4th annual international conference on advances in biotechnology, GSTF, Dubai, pp 23–25

    Google Scholar 

  • Sharathchandra RG, Raj SN, Shetty NP, Amruthesh KN, Shetty HS (2004) A Chitosan formulation Elexa induces downy mildew disease resistance and growth promotion in pearl millet. Crop Prot 23:881–888

    Article  CAS  Google Scholar 

  • Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Wang W, Liu L, Wu S, Wei Y, Li W (2013) Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng 118:125–131

    Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  CAS  PubMed  Google Scholar 

  • Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2(4):289–294

    Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B Biointerfaces 101:162–170

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Zhao X, Du Y (2010) Oligochitosan: a plant diseases vaccine-a review. Carbohydr Polym 82:1–8

    Article  CAS  Google Scholar 

  • Zeng D, Luo X, Tu R (2012) Application of bioactive coatings based on chitosan for soybean seed protection. Int J Carbohydr Chem 1:1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Saharan, V., Pal, A. (2016). Introduction. In: Chitosan Based Nanomaterials in Plant Growth and Protection. SpringerBriefs in Plant Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3601-6_1

Download citation

Publish with us

Policies and ethics