Skip to main content

Microscopy-Based High-Throughput Analysis of Cells Interacting with Nanostructures

  • Chapter
  • First Online:
Systems Biology Application in Synthetic Biology

Abstract

Due to their small size and related interesting properties, artificial nanomaterials are utilized for a great number of biological and medical applications. Cell entry routes, intracellular trafficking and processing of nanoparticles, which determine their fate, efficiency, and toxicity, are depending on various parameters of the specific nanomaterial, such as size, surface charge, surface chemistry and elasticity. Nanoparticle-cell interactions are typically elucidated by means of fluorescence microscopy as cell functions can be observed by a multiplicity of commercially available probes. For the quantification of cell features from images (image cytometry), computer-based algorithms are favoured to avoid bias introduced by the subjective perception of the observer. By applying high throughput microscopy in combination with digital image cytometry the screening of high numbers of cells is made possible yielding statistically meaningful results. In this chapter methods from digital image cytometry are described for assessing the interactions of cells with nanostructures.

This chapter is adopted from the PhD thesis of Dr. Raimo Hartmann, submitted and accepted by the Physics Department of the Philipps Universität Marburg in 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also referred to as high-content screening (HCS).

  2. 2.

    d h = hydrodynamic diameter.

  3. 3.

    1321 N1, SH-SY5Y, Raw267.4, A549, hCMEC, HepG2, and HEK293 cells.

  4. 4.

    Jan et al. [52] did not provide any further characterization in their work.

  5. 5.

    Depending on the optical properties of the fluorescent complex and the instrumentation.

  6. 6.

    Splines are piecewise-defined polynomial functions.

  7. 7.

    Voronoi diagrams describe a distance-controlled partitioning of a plane into regions based on seeds, cf. Figure 9.3e [73].

  8. 8.

    For instance, in the case of adherent cells, no detachment and transfer into certain buffers prior to cytometric measurements are required.

References

  1. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chemie Int Ed 49:1362–1395

    Article  CAS  Google Scholar 

  2. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  PubMed  Google Scholar 

  3. Barreto JA, O’Malley W, Kubeil M et al (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18–H40

    Article  CAS  PubMed  Google Scholar 

  4. Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001

    Article  Google Scholar 

  5. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  6. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  7. McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–67

    Article  CAS  PubMed  Google Scholar 

  8. Liong M, Lu J, Kovochich M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chemie - Int Ed 47:5122–5135

    Article  CAS  Google Scholar 

  10. Casula MF, Floris P, Innocenti C et al (2010) Magnetic resonance imaging contrast agents based on iron oxide superparamagnetic ferrofluids. Chem Mater 22:1739–1748

    Article  CAS  Google Scholar 

  11. Dutz S, Andrä W, Hergt R et al (2007) Biomedical heating applications of magnetic iron oxide nanoparticles. In: Magjarevic R (ed) World congress on medical physics and biomedical engineering 2006 SE - 76. Springer, Heidelberg, pp 271–274

    Chapter  Google Scholar 

  12. Sperling RA, Rivera Gil P, Zhang F et al (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  CAS  PubMed  Google Scholar 

  13. Xia Y (2008) Nanomaterials at work in biomedical research. Nat Mater 7:758–760

    Article  CAS  PubMed  Google Scholar 

  14. Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio- sensors. Chem Soc Rev 36:579–591

    Article  CAS  PubMed  Google Scholar 

  15. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  16. Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  CAS  PubMed  Google Scholar 

  17. Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1

    Google Scholar 

  19. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–474

    Article  CAS  PubMed  Google Scholar 

  20. Jain PK, ElSayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29

    Article  Google Scholar 

  21. Neely A, Perry C, Varisli B et al (2009) Ultrasensitive and highly selective detection of alzheimer’s disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle. ACS Nano 3:2834–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fan J, Li H, Jiang J et al (2008) 3c-sic nanocrystals as fluorescent biological labels. Small 4:1058–1062

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Li J, Lykotrafitis G et al (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stoehr LC, Gonzalez E, Stampfl A et al (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hühn D, Kantner K, Geidel C et al (2013) Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7:3253–3263

    Article  PubMed  Google Scholar 

  26. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized mdck cells. Biomacromolecules 9:435–443

    Article  CAS  PubMed  Google Scholar 

  27. Schweiger C, Hartmann R, Zhang F et al (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnology 10:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anguissola S, Garry D, Salvati A et al (2014) High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles. PLoS One 9:e108025

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hartmann R, Weidenbach M, Neubauer M et al (2015) Stiffness-dependent in vitro uptake and lysosomal acidification of colloidal particles. Angew Chemie Int Ed 54:1365–1368

    Article  CAS  Google Scholar 

  30. Banquy X, Suarez F, Argaw A et al (2009) Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter 5:3984

    Article  CAS  Google Scholar 

  31. Liu W, Zhou X, Mao Z et al (2012) Uptake of hydrogel particles with different stiffness and its influence on hepg2 cell functions. Soft Matter 8:9235

    Article  CAS  Google Scholar 

  32. Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  34. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  35. Jiang X, Röcker C, Hafner M et al (2010) Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live hela cells. ACS Nano 4:6787–6797

    Article  CAS  PubMed  Google Scholar 

  36. Ma X, Hartmann R, Jimenez de Aberasturi D, Yang F, Soenen S. J, Manshian B, Franz J, Valdeperez D, Pelaz B, Hampp N et al. (n.d.) Nano Today, in revision.

    Google Scholar 

  37. Kim JA, Åberg C, Salvati A, Dawson KA (2011) Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol 7:62–68

    Article  PubMed  Google Scholar 

  38. De Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  PubMed  Google Scholar 

  39. Van Der Zande M, Vandebriel RJ, Van Doren E et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442

    Article  PubMed  Google Scholar 

  40. Kreyling WG, Abdelmonem AM, Ali Z et al (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10:619–623

    Article  CAS  PubMed  Google Scholar 

  41. Haney SA (2007) High content screening: science, techniques and applications. High Content Screen Sci Tech Appl 1:391

    Google Scholar 

  42. Gasparri F (2009) An overview of cell phenotypes in hcs: limitations and advantages. Expert Opin Drug Discov 4:643–657

    Article  CAS  PubMed  Google Scholar 

  43. Taylor DL, Haskins JR, Giuliano KA (2007) High content screening : a powerful approach to systems cell biology and drug discovery

    Google Scholar 

  44. Richards GR, Smith AJ, Parry F et al (2006) A morphology- and kinetics-based cascade for human neural cell high content screening. Assay Drug Dev Technol 4:143–152

    Article  CAS  PubMed  Google Scholar 

  45. Fennell M, Chan H, Wood A (2006) Multiparameter measurement of caspase 3 activation and apoptotic cell death in nt2 neuronal precursor cells using high-content analysis. J Biomol Screen Off J Soc Biomol Screen 11:296–302

    Article  Google Scholar 

  46. Inglefield JR, Larson CJ, Gibson SJ et al (2006) Apoptotic responses in squamous carcinoma and epithelial cells to small-molecule toll-like receptor agonists evaluated with automated cytometry. J Biomol Screen Off J Soc Biomol Screen 11:575–585

    Article  CAS  Google Scholar 

  47. Lövborg H, Gullbo J, Larsson R (2005) Screening for apoptosis--classical and emerging techniques. Anticancer Drugs 16:593–599

    Article  PubMed  Google Scholar 

  48. Bertelsen M, Sanfridson A (2005) Inflammatory pathway analysis using a high content screening platform. Assay Drug Dev Technol 3:261–271

    Article  CAS  PubMed  Google Scholar 

  49. Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356

    Article  CAS  PubMed  Google Scholar 

  50. Moffat J, Grueneberg DA, Yang X et al (2006) A lentiviral rnai library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124:1283–1298

    Article  CAS  PubMed  Google Scholar 

  51. Bjorklund M, Taipale M, Varjosalo M et al (2006) Identification of pathways regulating cell size and cell-cycle progression by rnai. Nature 439:1009–1013

    Article  PubMed  Google Scholar 

  52. Jan E, Byrne SJ, Cuddihy M et al (2008) High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2:928–38

    Article  CAS  PubMed  Google Scholar 

  53. Soenen SJ, Manshian B, Montenegro JM et al (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6:5767–5783

    Article  CAS  PubMed  Google Scholar 

  54. Solmesky LJ, Shuman M, Goldsmith M et al (2011) Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach. Nanotechnology 22:494016

    Article  PubMed  Google Scholar 

  55. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

  56. Lindblad J (2002) Development of algorithms for digital image cytometry

    Google Scholar 

  57. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J et al (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  PubMed Central  Google Scholar 

  58. Basiji DA, Ortyn WE, Liang L et al (2007) Cellular image analysis and imaging by flow cytometry. Clin Lab Med 27:653–670

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dreinhöfer KE, Baldetorp B, Åkerman M et al (2002) DNA ploidy in soft tissue sarcoma: comparison of flow and image cytometry with clinical follow-up in 93 patients. Clin Cytom 50:19–24

    Article  Google Scholar 

  60. Boland MV, Markey MK, Murphy RF (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33:366–375

    Article  CAS  PubMed  Google Scholar 

  61. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Donaldson JG (2002) Immunofluorescence staining. Curr Protoc Immunol Chapter 21, Unit 21.3.

    Google Scholar 

  63. Suzuki T, Matsuzaki T, Hagiwara H et al (2007) Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochem Cytochem 40:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hartmann R, Carregal-Romero S, Parak WJ, Rivera_Gil P (2012) Investigating nanoparticle internalization patterns by quantitative correlation analysis of microscopy imaging data. In: de la Fuente JM, Grazu V (eds) Inorganic nanoparticles vs organic nanoparticles. Elsevier Ltd, Amsterdam, p 181

    Chapter  Google Scholar 

  65. Pawley JB, Masters BR (2008) Handbook of biological confocal microscopy, third edition. J Biomed Opt 13:029902

    Article  Google Scholar 

  66. Gonzalez RC, Woods RE (2007) Digital image processing. 976

    Google Scholar 

  67. Lindblad J, Bengtsson E (2001) A comparison of methods for estimation of intensity non uniformities in 2d and 3d microscope images of fluorescence stained cells. In: Proceedings of 12th Scandinavian conference on image analysis, 264–271.

    Google Scholar 

  68. Landmann L (2002) Deconvolution improves colocalization analysis of multiple uorochromes in 3d confocal data sets more than ltering techniques. Imaging 208:134–147

    CAS  Google Scholar 

  69. Chen S, Leung H (2004) Chaotic spread spectrum watermarking for remote sensing images. J Electron Imaging 13:220

    Article  Google Scholar 

  70. Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2:176–201

    Article  CAS  PubMed  Google Scholar 

  71. Meyer F, Beucher S (1990) Morphological segmentation. J Vis Commun Image Represent 1:21–46

    Article  Google Scholar 

  72. Jones TR, Carpenter A, Golland P (2005) Voronoi-based segmentation of cells on image manifolds. In: Computer vision for biomedical image applications. Springer, Heidelberg, pp 535–543

    Chapter  Google Scholar 

  73. Aurenhammer F (1991) Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput Surv 23:345–405

    Article  Google Scholar 

  74. Ballard DH (1981) Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit 13:111–122

    Article  Google Scholar 

  75. Rodenacker K, Bengtsson E (2003) A feature set for cytometry on digitized microscopic images. Anal Cell Pathol 25:1–36

    Article  PubMed  PubMed Central  Google Scholar 

  76. Perlman ZE, Slack MD, Feng Y et al (2004) Multidimensional drug profiling by automated microscopy. Science 306:1194–1198

    Article  CAS  PubMed  Google Scholar 

  77. Mitchison TJ (2005) Small-molecule screening and profiling by using automated microscopy. ChemBioChem 6:33–39

    Article  CAS  PubMed  Google Scholar 

  78. Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804

    Article  Google Scholar 

  80. Pelaz B, del Pino P, Maffre P et al (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008

    Article  CAS  PubMed  Google Scholar 

  81. Hartmann R, Carregal-Romero S, Parak WJ, Rivera-Gil P (2012) Investigating nanoparticle internalization patterns by quantitative correlation analysis of microscopy imaging data. Front Nanosci 4:181–196

    Google Scholar 

  82. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-color confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  83. Crocker J, Crocker J, Grier D (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  84. Jaqaman K, Danuser G (2009) Computational image analysis of cellular dynamics: a case study based on particle tracking. Cold Spring Harb. Protoc. 4

    Google Scholar 

  85. Purschke M, Rubio N, Held KD, Redmond RW (2010) Phototoxicity of hoechst 33342 in time-lapse fluorescence microscopy. Photochem Photobiol Sci 9:1634–1639

    Article  CAS  PubMed  Google Scholar 

  86. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimo Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Hartmann, R., Parak, W.J. (2016). Microscopy-Based High-Throughput Analysis of Cells Interacting with Nanostructures. In: Singh, S. (eds) Systems Biology Application in Synthetic Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2809-7_9

Download citation

Publish with us

Policies and ethics