Skip to main content

Design, Principles, Network Architecture and Their Analysis Strategies as Applied to Biological Systems

  • Chapter
  • First Online:
Systems Biology Application in Synthetic Biology

Abstract

System biology provides systems level comprehension of biological systems. Biological systems are complex and stochastic at the molecular level. In the context of a cellular system, biological systems are composed of networks wherein molecular species such as genes, proteins and metabolites interact to form various types of networks such as metabolic networks, transcription networks, gene regulatory networks, signal transduction networks, protein-protein interaction networks, protein domain networks and phylogenetic networks. The biological components of a particular network also form a part of another network/system and it is these dynamic interactions that make the demarcation of networks highly difficult. Networks are based on certain design principles that work to maintain the system robustness and structure. Signalling networks, for example, have several feed forward and feedback control loops that are designed to control the system and the various perturbations that is subjected to. Systems biology therefore deals with complicated systems and hence it becomes essential to understand the complex topological properties and dynamic behaviour of each of the components in the system. Once the system under study is well understood, the development of synthetic systems and drugs to control the system or its components becomes relatively easy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon U (2007) An introduction to systems biology: design principles of biological circuits, vol 10, Chapman & Hall/CRC mathematical and computational biology series. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  2. Apic G, Gough J, Teichmann SA (2001) Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol 310(2):311–325. doi:10.1006/jmbi.2001.4776

    Article  CAS  PubMed  Google Scholar 

  3. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31(1):248–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biggs N, Lloyd EK, Wilson RJ (1986) Graph theory, 1736–1936. Clarendon, Oxford/New York

    Google Scholar 

  5. Borisuk MT, Tyson JJ (1998) Bifurcation analysis of a model of mitotic control in frog eggs. J Theor Biol 195(1):69–85. doi:10.1006/jtbi.1998.0781

    Article  PubMed  Google Scholar 

  6. Bukau B (1993) Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9(4):671–680

    Article  CAS  PubMed  Google Scholar 

  7. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544. doi:10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  8. Droste P, Miebach S, Niedenführ S, Wiechert W, Nöh K (2011) Visualizing multi-omics data in metabolic networks with the software Omix—a case study. Biosystems 105(2):154–161

    Article  CAS  PubMed  Google Scholar 

  9. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1. doi:10.1186/1471-2105-1-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286(Pt 2):313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  12. Funahashi A et al (2008) CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96(8):1254–1265

    Article  Google Scholar 

  13. Grosset J (2003) Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47(3):833–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guzman-Vargas L, Santillan M (2008) Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae. BMC Syst Biol 2:13. doi:10.1186/1752-0509-2-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hatzimanikatis V, Li C, Ionita JA, Broadbelt LJ (2004) Metabolic networks: enzyme function and metabolite structure. Curr Opin Struct Biol 14(3):300–306. doi:10.1016/j.sbi.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  16. Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84(2):299–308

    Article  CAS  PubMed  Google Scholar 

  17. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  CAS  PubMed  Google Scholar 

  18. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654. doi:10.1038/35036627

    Article  CAS  PubMed  Google Scholar 

  19. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664. doi:10.1126/science.1069492

    Article  CAS  PubMed  Google Scholar 

  20. Kumar K, Prakash A, Tasleem M, Islam A, Ahmad F, Hassan MI (2014) Functional annotation of putative hypothetical proteins from Candida dubliniensis. Gene 543(1):93–100. doi:10.1016/j.gene.2014.03.060

    Article  CAS  PubMed  Google Scholar 

  21. Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O (2006) TRANSPATH®: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res 34(suppl 1):D546–D551

    Article  CAS  PubMed  Google Scholar 

  22. Longabaugh WJ (2012) BioTapestry: a tool to visualize the dynamic properties of gene regulatory networks. Methods Mol Biol 786:359–394

    Article  CAS  PubMed  Google Scholar 

  23. Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI (2015) Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS ONE 10(4), e0124177. doi:10.1371/journal.pone.0124177

    Article  PubMed  PubMed Central  Google Scholar 

  24. Naqvi AAT, Ahmad F, Hassan MI (2015) Identification of functional candidates amongst hypothetical proteins of Mycobacterium leprae BR4923, a causative agent of leprosy. Genome. doi:10.1139/gen-2014-0178

    PubMed  Google Scholar 

  25. Nishimura D (2001) BioCarta. Biotech Softw Internet Rep Comput Softw J Scient 2(3):117–120

    Article  Google Scholar 

  26. Old LJ (1988) Tumor necrosis factor. Sci Am 258(5):59–60, 69–75

    Article  CAS  PubMed  Google Scholar 

  27. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. doi:http://www.nature.com/nbt/journal/v28/n3/abs/nbt.1614.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96(8):4285–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shahbaaz M, Hassan MI, Ahmad F (2013) Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS ONE 8(12), e84263. doi:10.1371/journal.pone.0084263

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68. doi:10.1038/ng881

    Article  CAS  PubMed  Google Scholar 

  32. Sauro H (2004) An introduction to biochemical modeling using JDesigner. Keck Graduate Institute, Claremont

    Google Scholar 

  33. Spivey A (2004) Systems biology: the big picture. Environ Health Perspect 112(16):A938–A943

    Article  PubMed  PubMed Central  Google Scholar 

  34. Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329(6137):348–351. doi:10.1038/329348a0

    Article  CAS  PubMed  Google Scholar 

  35. Titz B, Rajagopala SV, Goll J, Hauser R, McKevitt MT, Palzkill T, Uetz P (2008) The binary protein interactome of Treponema pallidum-the syphilis spirochete. PLoS ONE 3(5), e2292. doi:10.1371/journal.pone.0002292

    Article  PubMed  PubMed Central  Google Scholar 

  36. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12(10):994–998

    Article  CAS  Google Scholar 

  37. Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111(2872):23–29

    Article  Google Scholar 

  38. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  39. Weiner N (1948) Cybernetics or control and communication in the animal and machine. MIT Press, New York

    Google Scholar 

  40. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22(10):1249–1252. doi:10.1038/nbt1020

    Article  CAS  PubMed  Google Scholar 

  41. Winterbach W, Van Mieghem P, Reinders M, Wang H, de Ridder D (2013) Topology of molecular interaction networks. BMC Syst Biol 7:90. doi:10.1186/1752-0509-7-90

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wuchty S (2001) Scale-free behavior in protein domain networks. Mol Biol Evol 18(9):1694–1702

    Article  CAS  PubMed  Google Scholar 

  43. Wuchty S (2002) Interaction and domain networks of yeast. Proteomics 2(12):1715–1723. doi:10.1002/1615-9861(200212)2:12<1715::AID-PROT1715>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  44. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R (2011) DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res 39(Database issue):D730–D735. doi:10.1093/nar/gkq1229

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Imtaiyaz Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Naqvi, A.A.T., Hassan, M.I. (2016). Design, Principles, Network Architecture and Their Analysis Strategies as Applied to Biological Systems. In: Singh, S. (eds) Systems Biology Application in Synthetic Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2809-7_3

Download citation

Publish with us

Policies and ethics