Skip to main content

Melatonin, a Neuroprotective Agent: Relevance for Stress-Induced Neuropsychiatric Disorders

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Neuropsychiatric disorders commonly refer to psychiatric diseases caused by brain disorders. The main components of neuropsychiatric symptoms are cognitive impairment, depression, anxiety, paranoid-hallucinatory states, and behavioral and personality changes. Chronic stress is a major factor in depressive disorders. Dysregulation of hypothalamo-pituitary-adrenal axis is a common characteristic of depression. The cellular and molecular mechanisms underlying the role of stress in inducing these symptoms will be discussed. Melatonin, a hormone mainly secreted in the pineal gland, has pleiotropic neuropsychiatric actions mediated via several signaling pathways. It significantly prevented stress-induced memory deficits and depressive behavior; decreased the expressions of brain-derived neurotrophic factor (BDNF), glucocorticoid receptor (GR), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and synaptophysin; and reduced bromodeoxyuridine (BrdU)-labeled proliferating cells, doublecortin, and neurogenesis. The neurogenesis hypothesis of depression will be discussed, and the role of melatonin in this hypothesis will be presented. According to the novel function of new neurons in the stress response regulation, it is possible that melatonin can be used as a therapeutic agent to protect neurons and prevent the decrease of neurogenesis, which in turn reverses stress-induced depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmidt PJ, Murphy JH, Haq N, Rubinow DR, Danaceau MA. Stressful life events, personal losses, and perimenopause-related depression. Arch Womens Ment Health. 2004;7(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  2. Miyagawa K, Tsuji M, Fujimori K, Takeda H. Update on epigenetic regulation in pathophysiologies of stress-induced psychiatric disorders. Nihon Shinkei Seishin Yakurigaku Zasshi. 2010;30(4):153–60.

    CAS  PubMed  Google Scholar 

  3. Knapman A, Heinzmann JM, Hellweg R, Holsboer F, Landgraf R, Touma C. Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders. J Psychiatr Res. 2010;44(9):566–75.

    Article  CAS  PubMed  Google Scholar 

  4. Makino S, Hashimoto K, Gold PW. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav. 2002;73(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  5. Drew MR, Hen R. Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol Disord Drug Targets. 2007;6(3):205–18.

    Article  CAS  PubMed  Google Scholar 

  6. Nikisch G. Involvement and role of antidepressant drugs of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor function. Neuro Endocrinol Lett. 2009;30(1):11–6.

    CAS  PubMed  Google Scholar 

  7. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A. 1996;93(9):3908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56(9):640–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro) inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:744–59.

    Article  CAS  PubMed  Google Scholar 

  10. Richter-Levin G. The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist. 2004;10(1):31–9.

    Article  PubMed  Google Scholar 

  11. Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  12. Kronfeld-Schor N, Einat H. Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology. 2012;62(1):101–14.

    Article  CAS  PubMed  Google Scholar 

  13. Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P. Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol. 2014;143C:72–80.

    Article  CAS  Google Scholar 

  14. Tongjaroenbuangam W, Ruksee N, Mahanam T, Govitrapong P. Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain. Neurochem Int. 2013;63(5):482–91.

    Article  CAS  PubMed  Google Scholar 

  15. Keenan PA, Jacobson MW, Soleymani RM, Mayes MD, Stress ME, Yaldoo DT. The effect on memory of chronic prednisone treatment in patients with systemic disease. Neurology. 1996;47(6):1396–402.

    Article  CAS  PubMed  Google Scholar 

  16. Starkman MN, Schteingart DE, Schork MA. Depressed mood and other psychiatric manifestations of Cushing’s syndrome: relationship to hormone levels. Psychosom Med. 1981;43(1):3–18.

    Article  CAS  PubMed  Google Scholar 

  17. Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry. 1992;32(9):756–65.

    Article  CAS  PubMed  Google Scholar 

  18. Kostoglou-Athanassiou I, Treacher DF, Wheeler MJ, Forsling ML. Melatonin administration and pituitary hormone secretion. Clin Endocrinol (Oxf). 1998;48(1):31–7.

    Article  CAS  Google Scholar 

  19. Campino C, Valenzuela FJ, Torres-Farfan C, Reynolds HE, Abarzua-Catalan L, Arteaga E, et al. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Horm Metab Res. 2011;43(5):337–42.

    Article  CAS  PubMed  Google Scholar 

  20. Hirsch-Rodriguez E, Imbesi M, Manev R, Uz T, Manev H. The pattern of melatonin receptor expression in the brain may influence antidepressant treatment. Med Hypotheses. 2007;69(1):120–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sotthibundhu A, Phansuwan-Pujito P, Govitrapong P. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res. 2010;49(3):291–300.

    Article  CAS  PubMed  Google Scholar 

  22. Imbesi M, Uz T, Yildiz S, Arslan AD, Manev H. Drug- and region-specific effects of protracted antidepressant and cocaine treatment on the content of melatonin MT(1) and MT(2) receptor mRNA in the mouse brain. Int J Neuroprot Neuroregener. 2006;2:185–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Masson-Pevet M. Melatonin in the circadian system. J Soc Biol. 2007;201(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  24. Hansen MV, Andersen LT, Madsen MT, Hageman I, Rasmussen LS, Bokmand S, et al. Effect of melatonin on depressive symptoms and anxiety in patients undergoing breast cancer surgery: a randomized, double-blind, placebo-controlled trial. Breast Cancer Res Treat. 2014;145(3):683–95.

    Article  CAS  PubMed  Google Scholar 

  25. Haridas S, Kumar M, Manda K. Melatonin ameliorates chronic mild stress induced behavioral dysfunctions in mice. Physiol Behav. 2013;119:201–7.

    Article  CAS  PubMed  Google Scholar 

  26. Fonken LK, Nelson RJ. Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res. 2013;243:74–8.

    Article  PubMed  Google Scholar 

  27. Srinivasan V, Zakaria R, Othman Z, Lauterbach EC, Acuna-Castroviejo D. Agomelatine in depressive disorders: its novel mechanisms of action. J Neuropsychiatry Clin Neurosci. 2012;24(3):290–308.

    Article  CAS  PubMed  Google Scholar 

  28. Kirshenbaum GS, Burgess CR, Dery N, Fahnestock M, Peever JH, Roder JC. Attenuation of mania-like behavior in Na(+), K(+)-ATPase alpha3 mutant mice by prospective therapies for bipolar disorder: melatonin and exercise. Neuroscience. 2014;260:195–204.

    Article  CAS  PubMed  Google Scholar 

  29. Rawashdeh O, Dubocovich ML. Long-term effects of maternal separation on the responsiveness of the circadian system to melatonin in the diurnal nonhuman primate (Macaca mulatta). J Pineal Res. 2014;56(3):254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guaiana G, Gupta S, Chiodo D, Davies SJ, Haederle K, Koesters M. Agomelatine versus other antidepressive agents for major depression. Cochrane Database Syst Rev. 2013;12:CD008851.

    Google Scholar 

  31. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706–17.

    CAS  PubMed  Google Scholar 

  32. Presman DM, Hoijman E, Ceballos NR, Galigniana MD, Pecci A. Melatonin inhibits glucocorticoid receptor nuclear translocation in mouse thymocytes. Endocrinology. 2006;147(11):5452–9.

    Article  CAS  PubMed  Google Scholar 

  33. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59(12):1116–27.

    Article  CAS  PubMed  Google Scholar 

  34. de Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature. 1998;394(6695):787–90.

    Article  CAS  PubMed  Google Scholar 

  35. Nicholas A, Munhoz CD, Ferguson D, Campbell L, Sapolsky R. Enhancing cognition after stress with gene therapy. J Neurosci. 2006;26(45):11637–43.

    Article  CAS  PubMed  Google Scholar 

  36. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26(35):9022–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hansson L. Determinants of quality of life in people with severe mental illness. Acta Psychiatr Scand Suppl. 2006;429:46–50.

    Article  Google Scholar 

  38. Tahera Y, Meltser I, Johansson P, Hansson AC, Canlon B. Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology. 2006;147(9):4430–7.

    Article  CAS  PubMed  Google Scholar 

  39. Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology. 2005;51(4):234–8.

    Article  CAS  PubMed  Google Scholar 

  40. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):1068–72.

    Article  CAS  PubMed  Google Scholar 

  41. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry. 2004;9(6):609–20. 544.

    Article  CAS  PubMed  Google Scholar 

  42. Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, et al. Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol. 2008;28(4):569–79.

    Article  CAS  PubMed  Google Scholar 

  43. Cuzzocrea S, Thiemermann C, Salvemini D. Potential therapeutic effect of antioxidant therapy in shock and inflammation. Curr Med Chem. 2004;11(9):1147–62.

    Article  CAS  PubMed  Google Scholar 

  44. Manda K, Reiter RJ. Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol. 2010;90(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ramirez-Rodriguez G, Klempin F, Babu H, Benitez-King G, Kempermann G. Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology. 2009;34(9):2180–91.

    Article  CAS  PubMed  Google Scholar 

  46. Quiros I, Mayo JC, Garcia-Suarez O, Hevia D, Martin V, Rodriguez C, et al. Melatonin prevents glucocorticoid inhibition of cell proliferation and toxicity in hippocampal cells by reducing glucocorticoid receptor nuclear translocation. J Steroid Biochem Mol Biol. 2008;110(1–2):116–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kim YH, Lee SH, Mun KC. Effect of melatonin on antioxidant status in the plasma of cyclosporine-treated rats. Transplant Proc. 2002;34(7):2652–3.

    Article  CAS  PubMed  Google Scholar 

  48. Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci. 2004;29(6):417–26.

    PubMed  PubMed Central  Google Scholar 

  49. Detanico BC, Piato AL, Freitas JJ, Lhullier FL, Hidalgo MP, Caumo W, et al. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur J Pharmacol. 2009;607(1–3):121–5.

    Article  CAS  PubMed  Google Scholar 

  50. Kim MJ, Kim HK, Kim BS, Yim SV. Melatonin increases cell proliferation in the dentate gyrus of maternally separated rats. J Pineal Res. 2004;37(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  51. Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res. 2002;32(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  52. Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, et al. Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett. 2006;393(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  53. Imbesi M, Uz T, Dzitoyeva S, Manev H. Stimulatory effects of a melatonin receptor agonist, ramelteon, on BDNF in mouse cerebellar granule cells. Neurosci Lett. 2008;439(1):34–6.

    Article  CAS  PubMed  Google Scholar 

  54. Gomez M, Esparza JL, Nogues MR, Giralt M, Cabre M, Domingo JL. Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med. 2005;38(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  55. Ramirez-Rodriguez G, Ortiz-Lopez L, Dominguez-Alonso A, Benitez-King GA, Kempermann G. Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res. 2011;50(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  56. Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol. 2010;8(3):218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niyaz M, et al. Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol. 2008;22(3):546–58.

    Article  CAS  PubMed  Google Scholar 

  58. Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci U S A. 2009;106(2):647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23(1):349–57.

    CAS  PubMed  Google Scholar 

  60. Franklin TB, Murphy JA, Myers TL, Clarke DB, Currie RW. Enriched environment during adolescence changes brain-derived neurotrophic factor and TrkB levels in the rat visual system but does not offer neuroprotection to retinal ganglion cells following axotomy. Brain Res. 2006;1095(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  61. Takei N, Kuramoto H, Endo Y, Hatanaka H. NGF and BDNF increase the immunoreactivity of vesicular acetylcholine transporter in cultured neurons from the embryonic rat septum. Neurosci Lett. 1997;226(3):207–9.

    Article  CAS  PubMed  Google Scholar 

  62. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23(5):477–501.

    Article  CAS  PubMed  Google Scholar 

  63. Kunugi H, Ida I, Owashi T, Kimura M, Inoue Y, Nakagawa S, et al. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a Multicenter Study. Neuropsychopharmacology. 2006;31(1):212–20.

    CAS  PubMed  Google Scholar 

  64. Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, et al. Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience. 2010;165(4):1301–11.

    Article  CAS  PubMed  Google Scholar 

  65. Vellucci SV, Parrott RF, Mimmack ML. Down-regulation of BDNF mRNA, with no effect on trkB or glucocorticoid receptor m RNAs, in the porcine hippocampus after acute dexamethasone treatment. Res Vet Sci. 2001;70(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  66. Mizuno M, Yamada K, He J, Nakajima A, Nabeshima T. Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem. 2003;10(2):108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol. 1998;80(1):452–7.

    CAS  PubMed  Google Scholar 

  68. Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci. 2007;35(2):208–19.

    Article  CAS  PubMed  Google Scholar 

  69. Weaver DR, Rivkees SA, Reppert SM. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J Neurosci. 1989;9(7):2581–90.

    CAS  PubMed  Google Scholar 

  70. Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI, et al. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int. 1998;32(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  71. Sutcu R, Yonden Z, Yilmaz A, Delibas N. Melatonin increases NMDA receptor subunits 2A and 2B concentrations in rat hippocampus. Mol Cell Biochem. 2006;283(1–2):101–5.

    Article  CAS  PubMed  Google Scholar 

  72. Reiter RJ, Manchester LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol. 2010;8(3):194–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haynes LE, Griffiths MR, Hyde RE, Barber DJ, Mitchell IJ. Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: implications for mood disorders. Neuroscience. 2001;104(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  74. Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T, et al. Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J. 2005;19(10):1359–61.

    CAS  PubMed  Google Scholar 

  75. Mutsaers HA, Tofighi R. Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells. Neurotox Res. 2012;22(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  76. Suwanjang W, Abramov AY, Govitrapong P, Chetsawang B. Melatonin attenuates dexamethasone toxicity-induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J Steroid Biochem Mol Biol. 2013;138:116–22.

    Article  CAS  PubMed  Google Scholar 

  77. Konakchieva R, Mitev Y, Almeida OF, Patchev VK. Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology. 1998;67(3):171–80.

    Article  CAS  PubMed  Google Scholar 

  78. Sainz RM, Mayo JC, Reiter RJ, Antolin I, Esteban MM, Rodriguez C. Melatonin regulates glucocorticoid receptor: an answer to its antiapoptotic action in thymus. FASEB J. 1999;13(12):1547–56.

    CAS  PubMed  Google Scholar 

  79. Kiefer TL, Lai L, Yuan L, Dong C, Burow ME, Hill SM. Differential regulation of estrogen receptor alpha, glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res. 2005;38(4):231–9.

    Article  CAS  PubMed  Google Scholar 

  80. Mendez IA, Montgomery KS, LaSarge CL, Simon NW, Bizon JL, Setlow B. Long-term effects of prior cocaine exposure on Morris water maze performance. Neurobiol Learn Mem. 2008;89(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  81. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870–3.

    Article  CAS  PubMed  Google Scholar 

  82. Gupta S, Haldar C. Physiological crosstalk between melatonin and glucocorticoid receptor modulates T-cell mediated immune responses in a wild tropical rodent, Funambulus pennanti. J Steroid Biochem Mol Biol. 2013;134:23–36.

    Article  CAS  PubMed  Google Scholar 

  83. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406–17.

    Article  CAS  PubMed  Google Scholar 

  84. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci. 2008;11(8):901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fornal CA, Stevens J, Barson JR, Blakley GG, Patterson-Buckendahl P, Jacobs BL. Delayed suppression of hippocampal cell proliferation in rats following inescapable shocks. Brain Res. 2007;1130(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  86. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1–2):172–89.

    Article  CAS  PubMed  Google Scholar 

  87. Sahaya K, Mahajan P, Mediratta PK, Ahmed RS, Sharma KK. Reversal of lindane-induced impairment of step-down passive avoidance and oxidative stress by neurosteroids in rats. Toxicology. 2007;239(1–2):116–26.

    Article  CAS  PubMed  Google Scholar 

  88. Czeh B, Muller-Keuker JI, Rygula R, Abumaria N, Hiemke C, Domenici E, et al. Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology. 2007;32(7):1490–503.

    Article  CAS  PubMed  Google Scholar 

  89. Lucassen PJ, Stumpel MW, Wang Q, Aronica E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology. 2010;58(6):940–9.

    Article  CAS  PubMed  Google Scholar 

  90. Bjornebekk A, Mathe AA, Brene S. The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol. 2005;8(3):357–68.

    Article  CAS  PubMed  Google Scholar 

  91. Fujioka A, Fujioka T, Tsuruta R, Izumi T, Kasaoka S, Maekawa T. Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neurosci Lett. 2011;488(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  92. Tamai S, Sanada K, Fukada Y. Time-of-day-dependent enhancement of adult neurogenesis in the hippocampus. PLoS ONE. 2008;3(12):e3835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anacker C. Adult hippocampal neurogenesis in depression: behavioral implications and regulation by the stress system. Curr Top Behav Neurosci. 2014;18:25–43.

    Article  PubMed  Google Scholar 

  94. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, et al, Role for the kinase SKG1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis proc Natl Acad Sci U S A. 2013;110(21):8708–13

    Google Scholar 

  95. Montaron MF, Drapeau E, Dupret D, Kitchener P, Aurousseau C, Le Moal M, et al. Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging. 2006;27(4):645–54.

    Article  CAS  PubMed  Google Scholar 

  96. Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  97. Yu IT, Lee SH, Lee YS, Son H. Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem Biophys Res Commun. 2004;317(2):484–90.

    Article  CAS  PubMed  Google Scholar 

  98. Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS, et al. Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res. 2004;1027(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  99. Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology. 2013;38(5):872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Halvorsen M, Waterloo K, Sundet K, Eisemann M, Wang CE. Verbal learning and memory in depression: a 9-year follow-up study. Psychiatry Res. 2011;188(3):350–4.

    Article  PubMed  Google Scholar 

  101. Gao LC, Wang YT, Lao X, Wang C, Wang FY, Yuan CG. The change of learning and memory ability in the rat model of depression. Fen Zi Xi Bao Sheng Wu Xue Bao. 2009;42(1):20–6.

    PubMed  Google Scholar 

  102. Yun J, Koike H, Ibi D, Toth E, Mizoguchi H, Nitta A, et al. Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: possible involvement of a brain-specific transcription factor Npas4. J Neurochem. 2010;114(6):1840–51.

    Article  CAS  PubMed  Google Scholar 

  103. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A. 2000;97(20):11032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ferragud A, Haro A, Sylvain A, Velazquez-Sanchez C, Hernandez-Rabaza V, Canales JJ. Enhanced habit-based learning and decreased neurogenesis in the adult hippocampus in a murine model of chronic social stress. Behav Brain Res. 2010;210(1):134–9.

    Article  CAS  PubMed  Google Scholar 

  105. Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry. 2004;56(8):570–80.

    Article  CAS  PubMed  Google Scholar 

  106. Nasrallah HA, Hopkins T, Pixley SK. Differential effects of antipsychotic and antidepressant drugs on neurogenic regions in rats. Brain Res. 2010;1354:23–9.

    Article  CAS  PubMed  Google Scholar 

  107. Islam MR, Moriguchi S, Tagashira H, Fukunaga K. Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice. Neuroscience. 2014;272:116–30.

    Article  CAS  PubMed  Google Scholar 

  108. Dong H, Gao Z, Rong H, Jin M, Zhang X. beta-Asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules. 2014;19(5):5634–49.

    Article  CAS  PubMed  Google Scholar 

  109. Hayashi F, Takashima N, Murayama A, Inokuchi K. Decreased postnatal neurogenesis in the hippocampus combined with stress experience during adolescence is accompanied by an enhanced incidence of behavioral pathologies in adult mice. Mol Brain. 2008;1:22.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci. 2007;27(14):3845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mateus-Pinheiro A, Pinto L, Bessa JM, Morais M, Alves ND, Monteiro S, et al. Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Transl Psychiatry. 2013;3:e210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dery N, Pilgrim M, Gibala M, Gillen J, Wojtowicz JM, Macqueen G, et al. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front Neurosci. 2013;7:66.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476(7361):458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805–9.

    Article  CAS  PubMed  Google Scholar 

  115. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry. 2008;64(4):293–301.

    Article  CAS  PubMed  Google Scholar 

  116. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62(4):479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Becker S, Macqueen G, Wojtowicz JM. Computational modeling and empirical studies of hippocampal neurogenesis-dependent memory: effects of interference, stress and depression. Brain Res. 2009;1299:45–54.

    Article  CAS  PubMed  Google Scholar 

  118. Tocharus C, Puriboriboon Y, Junmanee T, Tocharus J, Ekthuwapranee K, Govitrapong P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience. 2014;275:314–21.

    Article  CAS  PubMed  Google Scholar 

  119. Rennie K, De Butte M, Pappas BA. Melatonin promotes neurogenesis in dentate gyrus in the pinealectomized rat. J Pineal Res. 2009;47(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  120. Ramirez-Rodriguez G, Vega-Rivera NM, Benitez-King G, Castro-Garcia M, Ortiz-Lopez L. Melatonin supplementation delays the decline of adult hippocampal neurogenesis during normal aging of mice. Neurosci Lett. 2012;530(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  121. Chern CM, Liao JF, Wang YH, Shen YC. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic Biol Med. 2012;52(9):1634–47.

    Article  CAS  PubMed  Google Scholar 

  122. Ramirez-Rodriguez G, Vega-Rivera NM, Oikawa-Sala J, Gomez-Sanchez A, Ortiz-Lopez L, Estrada-Camarena E. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice. J Pineal Res. 2014;56(4):450–61.

    Article  CAS  PubMed  Google Scholar 

  123. Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Cuzzocrea S, et al. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res. 2010;49(2):123–9.

    CAS  PubMed  Google Scholar 

  124. Dagyte G, Trentani A, Postema F, Luiten PG, Den Boer JA, Gabriel C, et al. The novel antidepressant agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in chronically stressed rats. CNS Neurosci Ther. 2010;16(4):195–207.

    Article  CAS  PubMed  Google Scholar 

  125. Paizanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, et al. Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol. 2010;13(6):759–74.

    Article  CAS  PubMed  Google Scholar 

  126. Ekthuwapranee K, Sotthibundhu A, Tocharus C, Govitrapong P. Melatonin ameliorates the inhibitory effects of dexamethasone on adult hippocampal progenitor cells proliferation via upregulation of Erk1/2 phosphorylation. J Steroid Biochem Mol Biol. 2014;145:38–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support from the Thailand Research Fund (grant No.DPG5780001) and a Mahidol University Research Grant to PG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyarat Govitrapong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Govitrapong, P., Ekthuwapranee, K., Ruksee, N., Boontem, P. (2016). Melatonin, a Neuroprotective Agent: Relevance for Stress-Induced Neuropsychiatric Disorders. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics