Skip to main content

Marine Sponges as Future Biomedical Models

  • Chapter
  • First Online:
Marine Sponges: Chemicobiological and Biomedical Applications

Abstract

Marine sponges are animals of the phylum Porifera and also excellent source of various biomaterials and organic compounds. In recent years, significant developments on marine sponges derived biomaterials have been explored for various biological and biomedical applications (tissue engineering, drug delivery and biosensor). Biosilica and collagen of marine sponge are important constituents and has huge potential application in regenerative medicine. In the present chapter, we have discussed about isolation procedure of biosilica and collagen from marine sponge. Furthermore, tissue engineering of biogenic silica toward bone tissue engineering is explained in details. Finally, sponge-derived compounds and its use in regenerative medicine and collagen in drug delivery are discussed. As a conclusion, marine sponges are promising source of future biomaterials for various biological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732):275–278

    Article  CAS  Google Scholar 

  • Bavestrello G, Cattaneo-Vietti R, Cerrano C, Cerutti S, Sará M (1996) Contribution of sponge spicules to the composition of biogenic silica in the Ligurian Sea. Mar Ecol 17(1–3):41–50. doi:10.1111/j.1439-0485.1996.tb00488.x

    Article  CAS  Google Scholar 

  • Bergquist PR (1978) Sponges. University of California Press, Los Angeles

    Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22(1):15–61. doi:10.1039/B415080P

    Article  CAS  Google Scholar 

  • Born R, Ehrlich H, Bazhenov V, Shapkin NP (2010) Investigation of nanoorganized biomaterials of marine origin. Arab J Chem 3(1):27–32

    Article  CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci 96(2):361–365

    Article  CAS  Google Scholar 

  • Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403(6767):289–292

    Article  CAS  Google Scholar 

  • Clarke S, Walsh P, Maggs C, Buchanan F (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29(6):610–617

    Article  CAS  Google Scholar 

  • Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F (2010) Hydroxyapatite bone substitutes developed via replication of natural marine sponges. J Mater Sci Mater Med 21(8):2255–2261

    Article  CAS  Google Scholar 

  • Duarte ARC, Silva JM, Silva TH, Osinga R, Ilan M, Marques A, Mano J, Reis R (2012) Marine sponges as natural scaffolds: decellularization by supercritical fluid technology and cellularization with osteoblasts for tissue engineering applications. J Tissue Eng Regent Med 6(1):171–172

    Google Scholar 

  • Ehrlich H (2010) Biological materials of marine origin. Springer, Heidelberg

    Book  Google Scholar 

  • Ehrlich H, Worch H (2007) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Porifera research: biodiversity, innovation & sustainability. Museu Nacional, Rio de Janeiro

    Google Scholar 

  • Ehrlich H, Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo J, Schiaparelli S, Ereskovsky A, Schupp P (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Biol Macromol 47(2):132–140

    Article  CAS  Google Scholar 

  • Fusetani N, Matsunaga S, Konosu S (1981) Bioactive marine metabolites II. Halistanol sulfate, an antimicrobial novel steroid sulfate from the marine sponge Halichondria cf. moorei Bergquist. Tetrahedron Lett 22(21):1985–1988

    Article  CAS  Google Scholar 

  • Green D, Howard D, Yang X, Kelly M, Oreffo R (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9(6):1159–1166

    Article  CAS  Google Scholar 

  • Green DW, Lai W-F, Jung H-S (2014) Evolving marine biomimetics for regenerative dentistry. Mar Drugs 12(5):2877–2912

    Article  Google Scholar 

  • Gresswell EJ (1922) Sponges: their nature, history, modes of fishing, varieties, cultivation, etc. Sir I. Pitman & Sons, ltd

    Google Scholar 

  • Heinemann S, Ehrlich H, Douglas T, Heinemann C, Worch H, Schatton W, Hanke T (2007a) Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo. Biomacromolecules 8(11):3452–3457

    Article  CAS  Google Scholar 

  • Heinemann S, Ehrlich H, Knieb C, Hanke T (2007b) Biomimetically inspired hybrid materials based on silicified collagen. Int J Mater Res 98(7):603–608

    Article  CAS  Google Scholar 

  • Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10(9):641–654

    Article  CAS  Google Scholar 

  • Hooper JN, Van Soest RW (2002) Systema Porifera. A guide to the classification of sponges. Springer, Berlin

    Book  Google Scholar 

  • Hooper JN, Kennedy JA, Quinn RJ (2002) Biodiversity ‘hotspots’, patterns of richness and endemism, and taxonomic affinities of tropical Australian sponges (Porifera). Biodivers Conserv 11(5):851–885

    Article  Google Scholar 

  • Kang QK, Hill CM, Demcheva MV, Vournakis JN, An YH (2005) Poly-N-acetyl glucosamine-SO4 for repairing osteochondral defect in rabbits. Key Eng Mater 288–289: 83–86

    Google Scholar 

  • Kim S-K (2013) Marine biomaterials: characterization, isolation and applications. CRC Press, New York

    Book  Google Scholar 

  • Kita M, Sakai E, Uemura D (2006) Pursuit of novel bioactive marine metabolites. J Synth Org Chem 64(5):471–480

    Article  CAS  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WE (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267(15):4878–4887

    Article  CAS  Google Scholar 

  • Levi C, Barton J, Guillemet C, Bras E, Lehuede P (1989) A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett 8(3):337–339

    Article  CAS  Google Scholar 

  • Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai K, Xu J, Zheng Q, Zheng M (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7(7):968

    Article  CAS  Google Scholar 

  • Lopez PJ, Gautier C, Livage J, Coradin T (2005) Mimicking biogenic silica nanostructures formation. Curr Nanosci 1(1):73–83. doi:10.2174/1573413052953156

    Article  CAS  Google Scholar 

  • Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206

    Article  CAS  Google Scholar 

  • Müller W, Li J, Schröder H, Qiao L, Wang X (2007) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4(1):219–232

    Article  Google Scholar 

  • Müller WEG, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schloßmacher U, Wiens M (2009) Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol 83(3):397–413

    Article  Google Scholar 

  • Nicklas M, Schatton W, Heinemann S, Hanke T, Kreuter J (2009) Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17β-estradiol-hemihydrate SCNPs for dermal delivery of estradiol. Drug Dev Ind Pharm 35(9):1035–1042

    Article  CAS  Google Scholar 

  • Pallela R, Bojja S, Janapala VR (2011) Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae). Int J Biol Macromol 49(1):85–92

    Article  CAS  Google Scholar 

  • Pallela R, Venkatesan J, Janapala VR, Kim SK (2012) Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J Biomed Mater Res 100 A(2):486–495

    Article  Google Scholar 

  • Pergament V, Schatton W, Fotaki N (2011) Study of release properties from marine sponge collagen coated formulations. AAPS J 13 (S2)

    Google Scholar 

  • Ravichandran R, Sundaramurthi D, Gandhi S, Sethuraman S, Krishnan UM (2014) Bioinspired hybrid mesoporous silica–gelatin sandwich construct for bone tissue engineering. Microporous Mesoporous Mater 187(0):53–62. doi:http://dx.doi.org/10.1016/j.micromeso.2013.12.018

    Article  CAS  Google Scholar 

  • Roveri N, Palazzo B, Iafisco M (2008) The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin Drug Deliv 5(8):861–877. doi:10.1517/17425247.5.8.861

    Article  CAS  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci 95(11):6234–6238

    Article  CAS  Google Scholar 

  • Silva TH, Alves A, Ferreira B, Oliveira J, Reys L, Ferreira R, Sousa R, Silva S, Mano J, Reis R (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57(5):276–306

    Article  CAS  Google Scholar 

  • Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7(3):142–162

    Article  CAS  Google Scholar 

  • Sowjanya J, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B 109:294–300

    Article  CAS  Google Scholar 

  • Sundar VC, Yablon AD, Grazul JL, Ilan M, Aizenberg J (2003) Fibre-optical features of a glass sponge. Nature 424(6951):899–900

    Article  CAS  Google Scholar 

  • Swatschek D, Schatton W, Müller WEG, Kreuter J (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54(2):125–133

    Article  CAS  Google Scholar 

  • Vats A, Tolley N, Polak J, Gough J (2003) Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28(3):165–172

    Article  CAS  Google Scholar 

  • Wang S-F, Wang X-H, Gan L, Wiens M, Schröder H, Müller W (2011a) Biosilica-glass formation using enzymes from sponges [silicatein]: basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]. Front Mater Sci 5(3):266–281. doi:10.1007/s11706-011-0145-1

    Article  Google Scholar 

  • Wang X, Wiens M, Schröder HC, Schloßmacher U, Pisignano D, Jochum KP, Müller WE (2011b) Evagination of cells controls bio-silica formation and maturation during spicule formation in sponges. PLoS ONE 6(6):e20523

    Article  CAS  Google Scholar 

  • Wang X, Schröder HC, Wiens M, Schloβmacher U, Müller WE (2012a) 5 biosilica: molecular biology, biochemistry and function in demosponges as well as its applied aspects for tissue engineering. Adv Mar Biol 62:231

    Article  Google Scholar 

  • Wang X, Schröder HC, Wiens M, Ushijima H, Müller WE (2012b) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23(4):570–578

    Article  CAS  Google Scholar 

  • Wang X, Schröder HC, Grebenjuk V, Diehl-Seifert B, Mailänder V, Steffen R, Schloßmacher U, Müller WEG (2014) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12(2):1131–1147

    Article  CAS  Google Scholar 

  • Zheng MH, Hinterkeuser K, Solomon K, Kunert V, Pavlos N, Xu J (2007) Collagen-derived biomaterials in bone and cartilage repair. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 179–185

    Google Scholar 

Download references

Acknowledgments

This paper was supported by research funds of Pukyong National University in 2015 and grant from the Marine Bioprocess Research Center of the Marine Biotechnology Program, funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Venkatesan, J., Anil, S., Chalisserry, E.P., Kim, SK. (2016). Marine Sponges as Future Biomedical Models. In: Pallela, R., Ehrlich, H. (eds) Marine Sponges: Chemicobiological and Biomedical Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2794-6_18

Download citation

Publish with us

Policies and ethics