Skip to main content

Potassium as an Important Plant Nutrient in Sustainable Agriculture: A State of the Art

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

The current scenario of potassium (K) depletion in soil is slowly increasing due to K fixation or the unavailable form of K in soil. Presently, farmers are faced with a problem of higher price of K fertilizer or other fertilizers in market so farmers are unable to fulfill the demand of potassium in soil for plant growth. Potassium deficiency affects the nutritional quality, mechanical stability, and also pathogen resistance of crops. Therefore, that times needs to fallow the sustainable technology for sustainable agricultural production through use of microbial consortia of potassium-solubilizing microbes or biofertilizer/PGPR under organic farming system. The potassium-solubilizing microorganism is one of the best sustainable technologies, which solubilizes the fixed form of K available for plant uptake. Thus, the bio-formula of the potassium-solubilizing microorganism as biofertilizer offers environmentally sustainable approach and also fulfills the requirement of potassium for crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold PW (1958) Potassium uptake by cation-exchange resins from soils and minerals. Nature 182:1594–1595

    Article  CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperate region soils. In: Munson RD (ed) Potassium in agriculture. Soil Science Society of America, Madison, pp 1:131–162

    Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67(6):1127–1155

    Article  CAS  Google Scholar 

  • Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Szabó I (2013) A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342(6154):114–118

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31(1):239–298

    Article  CAS  Google Scholar 

  • Conyers ES, McLean EO (1969) Plant uptake and chemical extractions for evaluating potassium release characteristics of soils. Soil Sci Soc Am J 33(2):226–230

    Article  CAS  Google Scholar 

  • FAI (2007) Fertiliser statistics 2006–2007. The Fertilizer Association of India, New Delhi

    Google Scholar 

  • Fenchel T (2005) Cosmopolitan microbes and their cryptic’ species. Aquat Microb Ecol 41(1):49–54

    Article  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  PubMed  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7(4):299–306

    Article  Google Scholar 

  • Haby VA, Russelle MP, Skogley EO (1990) Testing soil for potassium, calcium, and magnesium. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn, SSSA book series 3. Soil Science Society of America, Madison, America, pp 181–228

    Google Scholar 

  • Heinen W (1960) Silicon metabolism in microorganisms. Arch Microbiol 37:199–210

    CAS  Google Scholar 

  • Huertas R, Rubio L, Cagnac O, García‐Sánchez MJ, Alché JDD, Venema K, Rodríguez‐Rosales MP (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant Cell Environ 36(12):2135–2149

    Article  CAS  PubMed  Google Scholar 

  • Khawilkar SA, Ramteke JR (1993) Response of applied K in cereals in Maharashtra. Agriculture 11:84–96

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72(1):87–98

    Article  CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification of a silicate-dissolving bacterium and its effect on tomato. Sci Agric Sin 35:59–62

    CAS  Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28(1–2):133–140

    Article  PubMed  Google Scholar 

  • Lopes-Assad ML, Avansini SH, Rosa MM, De Carvalho JR, Ceccato-Antonini SR (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56(7):598–605

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg CV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Malavolta E (1985) Potassium status of tropical and subtropical region soils. In: R.E. Munson (ed.) Potassium in Agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Sci Soc Am, Madison, WI, pp. 163–200.

    Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiologie 59:49–55

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mengel K (1980) Effect of potassium on the assimilate conduction to storage tissue. Ber Deut Bot Gesch 93(1):353–362

    CAS  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    Article  CAS  PubMed  Google Scholar 

  • Richards JE, Bates TE (1989) Studies on the potassium supplying capacities of southern Ontario soils. Measurement of available K. Can J Soil Sci 69:597–610

    Article  CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Schroeder D (1979) Structure and weathering of potassium containing minerals. Proc Congr Int Potash Inst 2:43–63

    Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    Article  CAS  PubMed  Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solubilisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol Appl Sci 3(9):622–629

    Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002a) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Huang WY (2002b) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions for releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(12):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014). Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiology and biogeochemistry (p 175–198). Springer, Berlin.

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Sparks DL (2000) Bioavailability of soil potassium, D-38-D-52. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. Potassium Agric 16:238–249

    Google Scholar 

  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (1996) Methods of soil analysis. Part 3: Chemical methods, 3rd edn. Soil Science Society of America and American Society of Agronomy, Madison, pp 46–64

    Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3(3):350–355

    Google Scholar 

  • Supanjani Han HS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  Google Scholar 

  • Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17(3–4):170–178

    Article  CAS  Google Scholar 

  • Ullman WJ, Welch SA (2002) Organic ligands and feldspar dissolution. Geochem Soc 7:3–35

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Wang Y, Wu WH (2015) Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr Opin Plant Biol 25:46–52

    Article  PubMed  Google Scholar 

  • Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419

    Article  CAS  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fertil Sci 4:321–330

    Google Scholar 

  • Yakhontova LK, Andreev PI, Ivanova MY, Nesterovich LG (1987) Bacterial decomposition of smectite minerals. Dokl Akad Nauk USSR 296:203–206

    CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture–status and perspectives. J Plant Physiol 171(9):656–669

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Jaiswal, D.K., Verma, J.P., Prakash, S., Meena, V.S., Meena, R.S. (2016). Potassium as an Important Plant Nutrient in Sustainable Agriculture: A State of the Art. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_2

Download citation

Publish with us

Policies and ethics