Skip to main content

Improving Yeast Strains for Pentose Hexose Co-fermentation: Successes and Hurdles

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Bioethanol, a second generation biofuel, is considered to be one of the best alternatives to conventional petroleum-based liquid fuels. In the present scenario, it is being majorly produced by fermentation of hexoses coming from the cellulosic fraction of the lignocellulosic biomass. Biomass also comprises of up to 33 % hemicellulose, therefore, its fermentation would lead to enhanced bioethanol fermentation productivities. Bioethanol can be produced through biochemical as well as thermochemical processes. A biochemical process, which is environmentally favorable involves the use of microbes, e.g., yeast and bacteria. Bioethanol production from yeast, i.e., Saccharomyces cerevisiae has already been commercialized. However, demerit of this commercially viable strain is that it utilizes only hexoses, while pentoses are left unused. This paper discusses different strategies for improving the potential of yeast strains for mixed sugar fermentation to ethanol. There are ways to genetically improve yeast strains to enable them to ferment mixture of hexoses and pentoses. However, there are several physiological hurdles which can limit the success of conventional genetic approaches like cofactor imbalance, excessive by product formation, glucose repression, etc., which need to be tackled, in order to obtain enhanced yield. Metabolic engineering of the yeast strains is a way for enhancing bioethanol fermentation efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  Google Scholar 

  • Attfield PV, Bell PJ (2006) Use of population genetics to derive non recombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6:862–868

    Article  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675

    Google Scholar 

  • Bajwa PK, Shireen T, D’Aoust F, Pinel D, Martin VJJ, Trevors JT et al (2009) Mutants of the pentose-fermenting yeastPichia stipitis with improved tolerance to inhibitors in spent sulfite liquor. Biotechnol Bioeng 104:892–900

    Article  Google Scholar 

  • Bajwa PK, Pinel D, Martin VJJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81:179–186

    Article  Google Scholar 

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011)  Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6(1):008–020

    Google Scholar 

  • Chandel AK, Narasu ML, Ravinder R, Edula JR, Pasha C, Ravindra P, Rao LV (2008a). Forecasting bioethanol production from agro crop residues in Andhra Pradesh state: a case study. Technol Spectrum 1(2):12–27

    Google Scholar 

  • Chmielewska J (2003) Selected biotechnological features of hybrids of Saccharomyces cerevisiae and Yamadazyma stipitis. Elec J Po Agri Univ Biotechnol 6:1–13

    Google Scholar 

  • Chu Byron CH, Lee Hung (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  Google Scholar 

  • Demeke Mekonnen M, Dietz Heiko, Li Yingying, Foulique-Moreno Maria R, Mutturi Sarma, Deprez Sylvie, Den Abt Tom, Bonini Beatriz, Liden Gunnar, Dumortier Francoise, Verplaeste Alex, Boles Eckhard, Thevelein Johan M (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol for biofuels. 6:89

    Article  Google Scholar 

  • Dmytruk OV, Dmytruk KV, Abbas CA, Voronovsky AY, Sibirny AA (2008) Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell Fact 7:21–28

    Article  Google Scholar 

  • Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl Environ Microbiol 55:159–164

    Google Scholar 

  • Does AL, Bisson LF (1990) Isolation and characterization of Pichia heedii mutants defective in Xylose uptake. Appl Environ Microbiol 56(11):3321–3328

    Google Scholar 

  • Eliasson A, Boles E, Johansson B, Österberg M, Thevelein JM, Spencer-Martins I, Juhnke H, Hahn-Hägerdal B (2000) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(4):376–382

    Article  Google Scholar 

  • Eliasson A, Hofmeyr J-HS, Pedler S, Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297

    Article  Google Scholar 

  • Fonseca C, Spencer-Martins I, Hahn-Hägerdal B (2007) L-arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biotechnol. doi:10.1007/s00253-066-0830-7

    Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63(6):734–741

    Article  Google Scholar 

  • Gárdonyi M, Jeppsson M, Liden G, Gorwa-Grauslund MF, HahnHägerdal B (2003) Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82(7):818–824

    Article  Google Scholar 

  • Gong C-S, Chen L-F, Flickinger MC, Chiang L-C, Tsao GT (1981) Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl Environ Microbiol 41:430–436

    Google Scholar 

  • Gutierrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O, Aguilar-Uscanga MG (2012) Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol 87:263–270

    Article  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  Google Scholar 

  • Heluane H, Spencer JFT, Spencer D, de Figueroa L, Callieri DAS (1993) Characterization of hybrids obtained by protoplast fusion between Pachysolen tannophilus and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 40:98–100

    Article  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    Google Scholar 

  • Hou J, Vemuri GN, Bao X, Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:909–919

    Article  Google Scholar 

  • Huang CF, Lin TH, Guo GL, Hwang WS (2009) Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxifiation using a newly adapted strain of Pichia stipitis. Bioresour Technol 100:3914–3920

    Article  Google Scholar 

  • Jeffries T (1983) Utilization of xylose by bacteria yeasts and fungi. Adv Biochem Eng Biotechnol 27:1–32

    MathSciNet  Google Scholar 

  • Jeffries TW (1985) Emerging technology for fermenting d-xylose. Trends Biotechnol 3:208–212

    Article  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  Google Scholar 

  • Jin Y-S, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  Google Scholar 

  • Kato H, Matsuda F, Yamada R, Nagata K, Shirai T, Hasunuma T et al (2013) Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J Biosci Bioeng 116:333–336. doi:10.1016/j.jbiosc.2013.03.020

    Article  Google Scholar 

  • Khattab SMR, Watanabe S, Saimura M, Kodaki T (2011) A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochem Biophys Res Commun 404:634–637

    Article  Google Scholar 

  • Kilian SG, Vanuden N (1988) Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548

    Article  Google Scholar 

  • Kostrzynska M, Sopher CR, Lee H (1998) Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 159:107–112

    Article  Google Scholar 

  • Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61:1580–1585

    Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563

    Article  Google Scholar 

  • Li J, Zhao X, Liu C, Li F, Ren J, Bai F (2008) Construction of yeast strains for efficient ethanol fermentation from xylose by protoplast fusion. Abstracts V4-P-043. J Biotechnol 136:402–459

    Google Scholar 

  • Lin C, Hsieh P, Mau J, Teng D (2005) Construction of an intergeneric fusion from Schizosaccharomyces pombe and Lentinula edodes for xylan degradation and polyol production. Enzyme Microb Technol 36:107–117

    Article  Google Scholar 

  • Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210

    Article  Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    Article  Google Scholar 

  • Lucas C, Vanuden N (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495

    Article  Google Scholar 

  • Maleszka R, Schneider H (1982) Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on d-xylose. Appl Environ Microbiol 44:909–912

    Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17(2):287–293

    Article  Google Scholar 

  • Matsushika A, Sawayama S (2008) Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 106(3):306–309

    Article  Google Scholar 

  • Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008a) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105(3):296–299

    Article  Google Scholar 

  • Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008b) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increase ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(2):243–255

    Article  Google Scholar 

  • Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009a) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398

    Article  Google Scholar 

  • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009) Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818–22

    Google Scholar 

  • McMillan JD (1993) Xylose Fermenta to Ethanol: A Review

    Google Scholar 

  • Metzger MH, Hollenberg CP (1995) Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme binding domain affect the coenzyme specifiity. Eur J Biochem 228(1):50–54

    Article  Google Scholar 

  • Mishra P, Singh A (1993) Microbial pentose utilization. Adv Appl Microbiol 39:91–152

    Article  Google Scholar 

  • Ni H, Laplaza M, Jeffries TW (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on d-xylose. Appl Environ Microbiol 73:2061–2066

    Article  Google Scholar 

  • Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71(12):7866–7871

    Article  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  Google Scholar 

  • Pasha C, Kuhad RC, Rao LV (1997) Strain improvement of thermotolerant Saccharomyces cerevisiaeVS3 strain for better utilization of lignocellulosic substrates. J Appl Microbiol 103:1480–1489

    Article  Google Scholar 

  • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specifiity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    Article  Google Scholar 

  • Rodriguez-Peña JM, Cid VJ, Arroyo J, Nombela C (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiology Letters 162(1):155–160

    Google Scholar 

  • Rouhollah H, Iraj N, Giti E, Sorah A (2007) Mixed sugar fermentation by Pichia stipitis, Saccharomyces cerevisiae and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures. Afr J Biotechnol 6:1110–1114

    Google Scholar 

  • Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030

    Article  Google Scholar 

  • Shi NQ, Cruz J, Sherman F, Jeffries TW (2002) SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19:1203–1220

    Article  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Env Microbiol 56(11):3389–3394

    Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–8

    Google Scholar 

  • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004a) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317

    Article  Google Scholar 

  • Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U (2004b) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87(1):90–98

    Article  Google Scholar 

  • Sreenath HK, Jeffreis TW (2000) Production of ethanol from wood hydrolysate by yeasts. Bioresour Technol 72:253–260

    Article  Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies Academic press, p 17

    Google Scholar 

  • Stephanopoulos (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–4

    Google Scholar 

  • Tantirungkij M, Izuishi T, Seki T, Yoshida T (1994) Fed-batch fermentation of xylose by a fast-growing mutant of xylose-assimilating recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:8–12

    Article  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L, Penttila M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249

    Article  Google Scholar 

  • Toivari MH, Salusjärvi L, Ruohonen L, Penttilä M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae Applied and environmental microbiology 70(6):3681–3686

    Google Scholar 

  • van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306

    Article  Google Scholar 

  • Wahlbom F, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  Google Scholar 

  • Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349

    Article  Google Scholar 

  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130:316–319

    Article  Google Scholar 

  • Webb SR, Lee H (1990) Regulation of D-xylose Utiization by Hexoses I Pentose-fermenting Yeasts. Biotechnolog Adv 8:685–697

    Article  Google Scholar 

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) A novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 75:907–914

    Article  Google Scholar 

  • Yan F, Bai F, Tian S, Zhang J, Zhang Z, Yang X (2009) Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate. Appl Biochem Biotechnol 157(3):473–482

    Article  Google Scholar 

  • Yu S, Jeppsson H, Hahn-Hägerdal B (1995) Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol 44:314–320

    Article  Google Scholar 

  • Zhang W, Geng A (2012) Improved ethanol production by a xylose—fermenting yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 5:46

    Article  Google Scholar 

  • Zhu J-J, Yong Q, Xu Y, Chen S-X, Yu SY (2009) Adaptation fermentation of Pichia stipitis and combination detoxification on steam exploded lignocellulosic prehydrolyzate. Nat Sci 1:47–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Shalley Sharma, Sonia Sharma, Surender Singh, Lata, Anju Arora (2016). Improving Yeast Strains for Pentose Hexose Co-fermentation: Successes and Hurdles. In: Kumar, S., Khanal, S., Yadav, Y. (eds) Proceedings of the First International Conference on Recent Advances in Bioenergy Research. Springer Proceedings in Energy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2773-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2773-1_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2771-7

  • Online ISBN: 978-81-322-2773-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics