Skip to main content

Study of Joining Different Types of Polymers by Friction Stir Welding

  • Conference paper
CAD/CAM, Robotics and Factories of the Future

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Friction stir welding has been successfully employed for various types of polymers. The application of external heat source is beneficial in joining different types of polymers and fiber reinforced polymers by FSW. External heating elements such as heated shoe, viblade, hot air gun have been used to assist the Friction Stir Welding Process. Polymers with low melting point temperatures were easily joined while those with higher melting point temperatures either formed weaker joints or posed difficulty while welding. The Friction stir welding process also applies well to reinforced plastics. Joints of good tensile strength quality factor, flexural strength and shear strength are obtained. This paper reviews the work done with respect to joining of different types of polymers and fiber reinforced polymers and concludes by suggesting further scope for research in friction stir welding of polymers and polymer-hybrid composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arici, A., & Selale, S. (2007). Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Science and Technology of Welding and Joining, 12, 536–539.

    Article  Google Scholar 

  • Arici, A., & Sinmazçelýk, T. (2005). Effects of double passes of the tool on friction stir welding of polyethylene. Journal of Materials Science, 40, 3313–3316.

    Article  Google Scholar 

  • Aydin, M. (2010). Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polymer-Plastics Technology and Engineering, 49, 595–601.

    Article  Google Scholar 

  • Bagheri, A., Azdast, T., & Doniavi, A. (2013). An experimental study on mechanical properties of friction stir welded ABS sheets. Materials and Design, 43, 402–409.

    Article  Google Scholar 

  • Bozkurt, Y. (2012). The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Materials and Design, 35, 440–445.

    Article  Google Scholar 

  • Chen, Y. C., & Nakata, K. (2009). Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Materials and Design, 30, 469–474.

    Article  Google Scholar 

  • Czigány, T., & Kiss. Z. (2011). Friction stir welding of fiber reinforced polymer composites. In Presented at the 18th International Conference on Composite Materials, ICCM, Jeju, Korea.

    Google Scholar 

  • Guo, G., Wang, K. H., Park, C. B., Kim, Y. S., & Li, G. (2007). Effects of nanoparticles on the density reduction and cell morphology of extruded metallocene polyethylene/wood fiber nanocomposites. Journal of Applied Polymer Science, 104, 1058–1063.

    Article  Google Scholar 

  • Kiss, Z. (2011). Friction stir welding of polymers. Budapest University of Technology and Economics.

    Google Scholar 

  • Kiss, Z., & Czigány, T. (2012a). Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly(ethylene-terephthalate-glycol). Journal of Applied Polymer Science, 125, 2231–2238.

    Article  Google Scholar 

  • Kiss, Z., & Czigány, T. (2012b). Microscopic analysis of the morphology of seams in friction stir welded polypropylene, 6, 54–62.

    Google Scholar 

  • Lee, C. J., Huang, J. C., & Hsieh, P. J. (2006). Mg based nano-composites fabricated by friction stir processing. Scripta Materialia, 54, 1415–1420.

    Article  Google Scholar 

  • Lee, W. B., & Jung, S. B. (2004). The joint properties of copper by friction stir welding. Materials Letters, 58, 1041–1046.

    Article  Google Scholar 

  • Lee, W. B., Lee, C. Y., Chang, W. S., Yeon, Y. M., & Jung, S. B. (2005). Microstructural investigation of friction stir welded pure titanium. Materials Letters, 59, 3315–3318.

    Article  Google Scholar 

  • Liu, F. C., Liao, J., & Nakata, K. (2014). Joining of metal to plastic using friction lap welding. Materials and Design, 54, 236–244.

    Article  Google Scholar 

  • Marczis, B., & Czigány, T. (2002). Polymer joints. Periodica Polytechnica-Mechanical Engineering, 117–126.

    Google Scholar 

  • Mishra, R., Ma, Z., & Charit, I. (2003). Friction stir processing: A novel technique for fabrication of surface composite. Materials Science and Engineering A, 341, 307–310.

    Article  Google Scholar 

  • Mistry, K. (1997). Tutorial plastics welding technology for industry. Assembly Automation, 17, 196–200.

    Article  Google Scholar 

  • Mostafapour, A., & Azarsa, E. (2012). A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. International Journal of Physical Sciences.

    Google Scholar 

  • Nelson, T. W., Sorenson, C. D., & Johns, C. J. (2004). Friction stir welding of polymeric materials. U.S. Patent No. 6,811,632. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Ouyang, J., Yarrapareddy, E., & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology, 172, 110–122.

    Article  Google Scholar 

  • Panneerselvam, K., Aravindan, S., Haq, A. N. (2004). Joining of plastics by frictional vibration. In Presented at the International Symposium of Research Students on Materials Science and Engineering, Chennai, India.

    Google Scholar 

  • Park, H. S., Kimura, T., Murakami, T., Nagano, Y., Nakata, K., & Ushio, M. (2004). Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy. Materials Science and Engineering A, 371, 160–169.

    Article  Google Scholar 

  • Park, S. H. C., Sato, Y. S., & Kokawa, H. (2003). Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scripta Materialia, 49, 161–166.

    Article  Google Scholar 

  • Payganeh, G. H., Mostafa Arab, N. B., Dadgar Asl, Y., Ghasemi, F. A., & Saeidi Boroujeni, M. (2011). Effects of friction stir welding process parameters on polypropylene composite welds. International Journal of the Physical Sciences, 6(19), 4595–4601.

    Google Scholar 

  • Prado, R. A., Murr, L. E., Soto, K. F., & McClure, J. C. (2003). Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC. Materials Science and Engineering A, 349, 156–165.

    Article  Google Scholar 

  • Ratanathavorn, W. (2012). Hybrid joining of aluminum to thermoplastics with friction stir welding.

    Google Scholar 

  • Reynolds, A., Tang, W., Gnaupel-Herold, T., & Prask, H. (2003). Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scripta Materialia, 48, 1289–1294.

    Article  Google Scholar 

  • Scialpi, A., Troughton, M., Andrews, S., & De Filippis, L. A. C. (2009). VibladeTM: Friction stir welding for plastics. Welding International, 23, 846–855.

    Article  Google Scholar 

  • Shafiei-Zarghani, A., Kashani-Bozorg, S. F., & Zarei-Hanzaki, A. (2009). Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering A, 500, 84–91.

    Article  Google Scholar 

  • Shamsipur, A., Kashani-Bozorg, S. F., & Zarei-Hanzaki, A. (2011). The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surface & Coatings Technology, 206, 1372–1381.

    Article  Google Scholar 

  • Squeo, E. A., Bruno, G., Guglielmotti, A., & Quadrini, F. (2009). Friction stir welding of polyethylene sheets. The Annals of Dunarea de Jos University of Galati, Technologies in Machine Building, 5, 241–246.

    Google Scholar 

  • Strand, S. (2003). Joining plastics—Can friction stir welding compete? In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing Coil Winding Technology Conference (pp. 321–326).

    Google Scholar 

  • Takasu, N. (2003). Friction welding of plastics. Welding International, 17, 856–859.

    Article  Google Scholar 

  • Thomas, W. M., & Nicholas, E. D. (1997). Friction stir welding for the transportation industries. Materials and Design, 18, 269–273.

    Article  Google Scholar 

  • Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple-Smith, P., & Dawes, C. J. (1995). Friction welding. US Patent Application, 54603176.

    Google Scholar 

  • Troughton, M. J. (2009) Introduction. In Handbook of plastics joining (2nd ed., pp. xxi–xxii). Boston: William Andrew Publishing.

    Google Scholar 

  • Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63, 1259–1264.

    Article  Google Scholar 

  • Watanabe, T., Takayama, H., & Yanagisawa, A. (2006). Joining of aluminum alloy to steel by friction stir welding. Journal of Materials Processing Technology, 178, 342–349.

    Article  Google Scholar 

  • Yan, Y., Zhang, D., Qiu, C., & Zhang, W. (2010). Dissimilar friction stir welding between 5052 aluminum alloy and AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China 20, Supplement 2, s619–s623.

    Article  Google Scholar 

  • Yousefpour, A., Hojjati, M., & Immarigeon, J. P. (2004). Fusion bonding/welding of thermoplastic composites. Journal of Thermoplastic Composite Materials, 17, 303–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Panaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panaskar, N., Terkar, R. (2016). Study of Joining Different Types of Polymers by Friction Stir Welding. In: Mandal, D.K., Syan, C.S. (eds) CAD/CAM, Robotics and Factories of the Future. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2740-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2740-3_70

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2738-0

  • Online ISBN: 978-81-322-2740-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics