Skip to main content

On the Complexities in Machining Titanium Alloys

  • Conference paper
CAD/CAM, Robotics and Factories of the Future

Abstract

Good corrosion resistance, high specific strength, superior high-temperature performance and good fatigue resistance makes titanium and its alloys excellent candidate for biomedical, automobile, marine and aerospace component manufacturers. However, higher machining cost due to excessive tool wear and low material removal rate restricts its share in current engineering market. High hardness and ability to retain it at extreme temperatures, strong chemical affinity, low modulus of elasticity and poor thermal conductivity are the main reasons for poor machinability of titanium alloys. In this paper, based on available literature, machining difficulties such as variable width and thickness of chips, thermal stresses, severe pressure on cutting tool, tool wear, springback effect and residual stress are reviewed and underlying mechanisms behind these difficulties are presented. At the end, potential research issues are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal, H. A., Nouari, M., & El Mansori, M. (2009). Influence of thermal conductivity on wear when machining titanium alloys. Tribology International, 42(2), 359–372.

    Google Scholar 

  • Abele, E., & Frohlich, B. (2008). High speed milling of titanium alloys. Advances in Production Engineering and Management, 3, 131–140.

    Google Scholar 

  • Axinte, D. A., & Dewes, R. (2002). Surface integrity of hot work tool steel after high speed milling experimental data and empirical models. Journal of Materials Processing Technology, 127, 325–335.

    Google Scholar 

  • Barry, J., Byrne, G., & Lennon, D. (2001). Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. International Journal of Machine Tools and Manufacture, 41, 1055–1070.

    Google Scholar 

  • Boyer, R. R. (1996). An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213(1–2), 103–114.

    Google Scholar 

  • Calamaz, M., Coupard, D., & Girot, F. (2008). A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al-4V. International Journal of Machine Tools and Manufacture, 48, 275–288.

    Google Scholar 

  • Campbell, F. C. (2006). Manufacturing technology for aerospace structural materials (1st ed.). Kidlington: Elsevier.

    Google Scholar 

  • Che-Haron, C. H., & Jawaid, A. (2005). The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V. Journal of Materials Processing Technology, 166, 188–192.

    Google Scholar 

  • Che-Haron, C. H. (2001). Tool life and surface integrity in turning titanium alloy. Journal of Materials Processing Technology, 118, 231–237.

    Google Scholar 

  • Ezugwu, E., & Wang, Z. (1997). Titanium alloys and their machinability-a review. Journal of Materials Processing Technology, 68(3), 262–274.

    Google Scholar 

  • Fitzsimmons, M., & Sarin, V. K. (2001). Development of CVD WC–CO coatings. Surface & Coatings Technology, 137(2), 158–163.

    Google Scholar 

  • Fridlyander, J. N., & Eskin, D. G. (2006). Advances in metallic alloys, titanium alloys, Russian aircraft and aerospace applications. : CRC Press.

    Google Scholar 

  • Friedrich, C. R., & Kulkarni, V. P. (2004). Effect of workpiece springback on micromilling forces. Microsystem Technologies, 10, 472–477.

    Google Scholar 

  • Ginting, A., & Nouari, M. (2006). Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. International Journal of Machine Tools and Manufacture, 46, 758–768.

    Google Scholar 

  • Ginting, A., & Nouari, M. (2009). Surface integrity of dry machined titanium alloys. International Journal of Machine Tools and Manufacture, 49, 325–332.

    Google Scholar 

  • Gurrappa, I. (2003). Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Materials Characterization, 51(2–3), 131–139.

    Google Scholar 

  • He, G., & Zhang, Y. Z. (1985). Experimental investigations of the surface integrity of broached titanium alloy. CIRP Annals-Manufacturing Technology, 34(1), 491–494.

    Google Scholar 

  • Hosseini, A., & Kishawy H. A. (2014). Cutting tool materials and tool wear. In J. P. Davim Machining of titanium alloys (pp. 31–56). Berlin: Springer.

    Google Scholar 

  • Ibrahim, G. A., Che-Haron, C. H., & Ghani, J. A. (2009). The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V. Journal of Applied Sciences, 9, 121–127.

    Google Scholar 

  • Imam, M. A. (2011). The 12th world conference on titanium presents research and applications of “wonder metal”. The Journal of The Minerals, Metals and Materials Society, 63(10), 16–23.

    Google Scholar 

  • Jawaid, A., Che-Haron, C. H., & Abdullah, A. (1999). Tool wear characteristics in turning of titanium alloy Ti-6246. Journal of Material Processing Technology, 92–93, 329–334.

    Google Scholar 

  • Joshi, V. A. (2006). Titanium alloys: An atlas of structures and fracture features. : CRC Press-Taylor & Francis.

    Google Scholar 

  • Komanduri, R., & Hou, Z. (2002). On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4 V). Metallurgical and Materials Transactions A, 33(9), 2995–3010.

    Google Scholar 

  • Lütjering, G., & Williams, J. C. (2007). Titanium (2nd ed.). Springer: Germany.

    Google Scholar 

  • Machado, A. R., & Wallbank, J. (1990). Machining of titanium and its alloys - a review. Proceedings of Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 204, 53–60.

    Google Scholar 

  • Mantle, A. L., & Aspinwall, D. K. (2001). Surface integrity of a high speed milled gamma titanium aluminide. Journal of Materials Processing Technology, 118, 143–150.

    Google Scholar 

  • Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30–42.

    Google Scholar 

  • Obikawa, T., & Usuie, E. (1996). Computational machining of titanium alloy: Finite element modeling and a few results. Journal of Engineering for Industry, 118(2), 208–215.

    Google Scholar 

  • Peters, M., Hemptenmacher, J., Kumpfert, J., & Leyens, C. (2003). Structure and properties of titanium and titanium alloys. In C. Leyens & M. Peters (Eds.) Titanium and titanium alloys (Vol. 1). Germany: Wilay.

    Google Scholar 

  • Pramanik, A., & Littlefair, G. (2015). Machining of titanium alloy (Ti-6Al-4V)-theory to application. Machining Science and Technology: An International Journal, 19(1), 1–49.

    Google Scholar 

  • Pramanik, A. (2014). Problems and solutions in machining of titanium alloys. The International Journal of Advanced Manufacturing Technology, 70(5–8), 919–928.

    Google Scholar 

  • Pramanik, A., Islam, M. N., Basak, A., & Littlefair, G. (2013). Machining and tool wear mechanisms during machining titanium alloys. Advanced Materials Research, 651, 338–343.

    Google Scholar 

  • Schmidt, H., Stechemesser, G., Witte, J., & Soltani-Farshi, M. (1998). Depth distributions and anodic polarization behaviour of ion implanted Ti-6Al-4V. Corrosion Science, 40(9), 1533–1545.

    Google Scholar 

  • Shaw, M. C. (1984). Metal cutting principals. Canada: Oxford University Press.

    Google Scholar 

  • Shokrani, A., Dhokia, V., & Newman, S. T. (2012). Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57, 83–101.

    Google Scholar 

  • Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261, 760–766.

    Google Scholar 

  • Subramanian, S. V., Ingle, S. S., & Kay, D. A. R. (1993). Design of coatings to minimize tool crater wear. Surface & Coatings Technology, 61, 293–299.

    Google Scholar 

  • Sun, J., & Guo, Y. B. (2008). A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti–6Al-4V. International Journal of Machine Tools and Manufacture, 48, 1486–1494.

    Google Scholar 

  • Sun, J., & Guo, Y. B. (2009). A comprehensive experimental study on surface integrity by end milling Ti–6Al-4V. Journal of Materials Processing Technology, 209, 4036–4042.

    Google Scholar 

  • Sun, S., Brandt, M., & Dargusch, M. (2009). Characteristics of cutting forces and chip formation in machining of titanium alloys. International Journal of Machine Tools and Manufacture, 49(7), 561–568.

    Google Scholar 

  • Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250–280.

    Google Scholar 

  • Ulutan, D., & Özel, T. (2012). Methodology to determine friction in orthogonal cutting with application to machining titanium and nickel based alloys. In Proceedings of ASME 2012 International Manufacturing Science and Engineering Conference. Notre Dame, June 4–8, 2012.

    Google Scholar 

  • Veiga, C., Davim, J. P., & Loureiro, A. J. R. (2012). Properties and applications of titanium alloys: A brief review. Reviews on Advanced Materials Science, 32, 133–148.

    Google Scholar 

  • Veiga, C., Davim, J. P., & Loureiro, A. J. R. (2013). Review of machinability of titanium alloys: The process perspective. Reviews on Advanced Materials Science, 34(2), 148–164.

    Google Scholar 

  • Velásquez, J. D. P., Tidu, A., Bolle, B., Chevrier, P. & Fundenberger, J. J. (2010). Sub-surface and surface analysis of high speed machined Ti–6Al-4V alloy. Materials Science and Engineering: A, 527, 2572–2578.

    Google Scholar 

  • Vyas, A., & Shaw, M. C. (1999). Mechanics of saw-tooth chip formation in metal cutting. Journal of Manufacturing Science and Engineering, 121(2), 163–172.

    Google Scholar 

  • Wang, Z. G., Rahman, M., & Wong, Y. S. (2005). Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear, 258, 752–758.

    Google Scholar 

  • Wyen, C.-F., & Wegener, K. (2010). Influence of cutting edge radius on cutting forces in machining titanium. CIRP Annals—Manufacturing Technology, 59(1), 93–96.

    Google Scholar 

  • Yamashita, Y., Takayama, I., Fujii, H., & Yamazaki, T. (2002). Applications and features of titanium for automotive industry. Nippon Steel Technical Report, 85, 11–14.

    Google Scholar 

  • Yang, X., & Liu, C. R. (1999). Machining titanium and its alloys. Machining Science and Technology: An International Journal, 3(1), 107–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, P., Pungotra, H., Kalsi, N.S. (2016). On the Complexities in Machining Titanium Alloys. In: Mandal, D.K., Syan, C.S. (eds) CAD/CAM, Robotics and Factories of the Future. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2740-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2740-3_49

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2738-0

  • Online ISBN: 978-81-322-2740-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics