Advertisement

Implementation of Data Analytics for MongoDB Using Trigger Utility

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 410)

Abstract

SQL based traditional databases like Oracle; SQL server offers the capability to develop programs like Trigger. Trigger is a very important feature provided by many databases, especially useful in monitoring, rule enforcement, data validation and data analytics etc. MongoDB is non SQL document oriented database. MongoDB is the fastest growing and most demanding non SQL database. Since MongoDB primarily is operated using its out of box tools like mongo, mongos, bsondump, mongod, mongoexport and Java script function. MongoDB does not provide in-built feature for triggers which is very efficient in data analytics, monitoring and reporting purpose. Paper presents two utility in which one utility is a listener or poller utility which is developed to give similar feature like trigger and after that second utility is developed which gives historical data analytic capability on Mongo database by using the trigger utility. It pulls the data from analytic collection and generates the graph. Data analytic tools plays vital role in decision making in today’s complex business environment where data size is very huge and unstructured by nature.

Keywords

Trigger MongoDB Data analytics JSON HDFS 

References

  1. 1.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Burrows, M., Chandra, T., Andrew Fikes, A., Gruber, R.: Bigtable: a distributed storage system for structured data OSDI’06. In: Seventh Symposium on Operating System Design and Implementation, Seattle, WA (2006)Google Scholar
  2. 2.
    Han, J., Le, G.: Survey on NoSQL database in IEEE (2011). 978-1-4577-0208-2Google Scholar
  3. 3.
    Abouzeid, A.: Hadoop DB: an architectural hybrid of mapreduce and DBMS technologies for analytical workloads. In: Proceedings of the VLDB EndGoogle Scholar
  4. 4.
    Levitt, N.: Will NoSQL databases live up to their promise. IEEE Comput. Soc. 43(2), 922–933 (2009)Google Scholar
  5. 5.
    Han, I., Haihong, E., Le, G., Du, J.: Survey on NoSQL database. In: 6th International Conference on Pervasive Computing and Applications, pp. 363–366 (2011)Google Scholar
  6. 6.
    Padhy, R., Patra, M., Satapathy, S.: RDBMS to NoSQL: Reviewing some next-generation non-relational database’s. Int. J. Adv. Eng. Sci. Technol. 11(1), 015–030 (2011)Google Scholar
  7. 7.
    Rutishauser, N.: TPC-H applied to MongoDB: how a NoSQL database performs supervised by Prof. Dr. Michael B¨ohlen. Amr Noureldin 349 (2012)Google Scholar
  8. 8.
    DeCandia, G., Hastorun, D., Jampani, M.: Dynamo: amazon’s highly available key-value store. SOSP’07. Stevenson, Washington, USA (2007)Google Scholar
  9. 9.
    Tudorica, B., Bucur, C.: A comparison between several NoSQL databases with comments and notes. In: Roedunet International Conference (2011)Google Scholar
  10. 10.
    Kanade, A., Gopal, A.: An experimental study on open source RDBMS FDI issues and prospects. In: National Conference, pp. 203–206 (2013)Google Scholar
  11. 11.
    Hecht, R., Jablinski, S.: NoSQL evaluation a use case oriented survey. In: Proceedings International Conference on Cloud and Service Computing, pp. 12–14 (2011)Google Scholar
  12. 12.
    Adam, L., Jakob Mattson, J.: Investigating storage solutions for large data: a comparison of well performing and scalable data storage solutions for real time extraction and batch insertion of data (2011)Google Scholar
  13. 13.
    Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data processing on large clusters. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ‘07), pp. 1029–1040. ACM, New York, NY, USA (2007)Google Scholar
  14. 14.
    Veen, J., Waaij, B., Meijer, R.: Sensor data storage performance: SQL or NoSQL. In: Physical or Virtual Fifth International Conference on Cloud Computing, pp. 431–438. IEEE (2012)Google Scholar
  15. 15.
    Sanders, G., Shin, S.: Denormalization effects on performance of RDBMS. In: Proceedings of the 34th Hawaii International Conference on System Sciences, pp. 1–9. IEEE (2001)Google Scholar
  16. 16.
    Cruz, F., J. Pereira, J., Oliveira, R.: An effective scalable SQL engine for NoSQL databases in distributed applications and interoperable systems, pp. 155–168. Springer (2013)Google Scholar
  17. 17.
    Calil, A., Mello, R.: SimpleSQL: a relational layer for SimpleDB in ADBIS, pp. 99–110 (2012)Google Scholar
  18. 18.
    Stonebraker, M.: SQL databases v. NoSQL databases. Commun. ACM 53(4), 10–11 (2010)Google Scholar
  19. 19.
    Roijackers, J., Fletcher, L.H.G.: On bridging relational and document-centric data stores in BNCOD, pp. 135–148 (2013)Google Scholar
  20. 20.
    Hacigumus, H., Tatemura, J., PHsiung, W., Moon, H., Chi, Y.: CloudDB: one size fits all revived in services, pp. 148–149 (2010)Google Scholar
  21. 21.
    Ameri, P., Grabowski, U., Meyer, J., Streit, A.: On the application and performance of MongoDB for climate satellite data. In: Proceedings of 13th International Conference on Trust, Security and Privacy in Computing and Communications in IEEE (2014)Google Scholar
  22. 22.
    Wu, S., Jiang, S., Ooi, B., Tan, K.: Distributed online aggregations. In: Proceedings VLDB, pp. 443–454 (2009)Google Scholar
  23. 23.
    Pavlo, A.: A comparison of approaches to large-scale data analysis. In: Proceedings of the ACM SIGMOD, pp. 165–178 (2009)Google Scholar
  24. 24.
    Padhy, R., Patra, M., Satapathy, S.: RDBMS to NoSQL: reviewing some next-generation non-relational database’s. Int. J. Adv. Eng. Sci. Technol. 11(1), 015–030 (2011)Google Scholar
  25. 25.
    Banker, K.: MongoDB in action (2011)Google Scholar
  26. 26.
    Huang, S., Cai, L., Liu, Z., Hu, Y.: Non-structure data storage technology: a discussion computer and information science (ICIS), pp. 482–487 (2012)Google Scholar
  27. 27.
    Tauro, C.S.A.: Comparative study of the new generation, agile, scalable, high performance NOSQL database. Int. J. Comput. Appl. 48(20), Commun. ACM, 25(4), 0975–888 (2012)Google Scholar
  28. 28.
    Chitra, K., Jeevarani, B.: Study on basically available, scalable and eventually consistent NOSQL databases. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(7) (2013)Google Scholar
  29. 29.
    Mohan, B., Govardhan, A.: Online aggregation using MapReduce in MongoDB. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(9) (2013)Google Scholar
  30. 30.
    Dede, E., Govindraju, M.: Performance evaluation of a MongoDB and Hadoop platform for scientific data analysis. In: Proceedings of the 4th ACM Workshop on Scientific Cloud Computing (2013)Google Scholar
  31. 31.
    Khan, S., Mane, V.: SQL support over MongoDB using metadata. Int. J. Sci. Res. Public. 3(10) (2013)Google Scholar
  32. 32.
    Liu, Y., Wang, Y., Jin, Y.: Research on the improvement of MongoDB auto-sharding in cloud environment in computer science and education (ICCSE), pp. 851–854 (2012)Google Scholar
  33. 33.
    Boicea, A., Radulescu, F., Agapin, L.: MongoDB vs Oracle: database comparison. In: Third International Conference on Emerging Intelligent Data and Web Technologies (2012)Google Scholar
  34. 34.
    Zhao, G., Huang, W., Liang, S., Tang1, Y.: Modeling MongoDB with relational model. In: Fourth International Conference on Emerging Intelligent Data and Web Technologies (2013)Google Scholar
  35. 35.
    Kanade, A., Gopal, A., Kanade, S.: A study of normalization and embedding in MongoDB in IEEE (2014)Google Scholar
  36. 36.
    Murugesan, P., Ray, I.: Audit log management in MongoDB. In: IEEE 10th World Congress on Services (2014)Google Scholar
  37. 37.
    Xinwei, J., Guicheng, S.: Managing RFID data in MongoDB Workshop on Advanced Research and Technology in Industry Applications (WARTIA) in IEEE (2014)Google Scholar
  38. 38.
    Dwivedi, K., Dubey S.K.: Analytical review on Hadoop distributed files system. In: Proceeding of 5th International Conference on the Next Generation Information Technology Summit (Confluence), pp. 174–181. IEEE (2014)Google Scholar
  39. 39.
    Parker, Z., Poe, S., Vrbsky, S.: Comparing NoSQL MongoDB to an SQL DB. In: Proceedings of the 51st ACM Southeast Conference (2013)Google Scholar
  40. 40.
    Abramova, V., Bernardino, J.: NoSQL Databases: MongoDB vs. Cassandra. In: Proceedings of the International C* Conference on Computer Science and Software Engineering (2013)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Amity UniversityNoidaIndia

Personalised recommendations