Advertisement

A Survey on Face Detection and Person Re-identification

  • M. K. VidhyalakshmiEmail author
  • E. Poovammal
Conference paper
  • 1.1k Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 410)

Abstract

Today surveillance systems are used widely for security purposes to monitor people in public places. A fully automated system is capable of analyzing the information in the image or video through face detection, face tracking and recognition. The face detection is a technique to identify all the face in the image or video. Automated facial recognition system identifies or verifies a person from an image or a video by comparing features from the image and the face database. When surveillance system is used to monitor human for locating or tracking or analyzing the activities, the challenge of identification of a person is really a hard task. In this paper we survey the techniques involved in face detection and person re-identification.

Keywords

Surveillance Face detection Person re-identification 

References

  1. 1.
    Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. PAMI 24(1), 34–58 (2002)Google Scholar
  2. 2.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting in Computational Learning Theory, pp. 23–37. Eurocolt 95, SpringerGoogle Scholar
  3. 3.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of CVPR (2001)Google Scholar
  4. 4.
    Tao, L., Zheng, Y., Du, Y.: A failure-aware explicit shape regression model for facial landmark detection in video. IEEE Signal Process. Lett. 21(2), 244 (2014)Google Scholar
  5. 5.
    Li, S., Zhu, L., Zhang, Z., Blake, A., Zhang, H., Shum, H.: Statistical learning of multi-view face detection. In: Proceedings of ECCV (2002)Google Scholar
  6. 6.
    Jones. M., Viola, P.: Fast multi-view face detection. In: Technical report, Mitsubishi Electric Research Laboratories, TR2003-96 (2003)Google Scholar
  7. 7.
    Huang, C., Ai, H., Li, Y., Lao, S.: Learning sparse features in granular space for multi-view face detection. In: International Conference on Automatic Face and Gesture Recognition (2006)Google Scholar
  8. 8.
    Froba, B., Ernst, A.: Face detection with the modified census transform. In: IEEE International Conference on Automatic Face and Gesture Recognition (2004)Google Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. PAMI 24, 971–987 (2002)Google Scholar
  10. 10.
    Yan, S., Shan, S., Chen, X., Gao, W.: Locally assembled binary (LAB) feature with feature-centric cascade for fast and accurate face detection. In: Proceedings of CVPR (2008)Google Scholar
  11. 11.
    Jeong, K., Choi, Jaesik, Jang, G.-J.: Semi-local structure patterns for robust face detection. IEEE Signal Process. Lett. 22(9), 1400–1403 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, P., Ji, Q.: Learning discriminant features for multiview face and eye detection. In: Proceedings of CVPR (2005)Google Scholar
  13. 13.
    Baluja, S., Sahami, M., Rowley, H.A.: Efficient face orientation discrimination. In: Proceedings of ICIP (2004)Google Scholar
  14. 14.
    Pang, Y., Zhang, K., Yuan, Y., Wang, K.: Distributed object detection with linear SVMs. IEEE Trans. Cybern. 44(11), (2014)Google Scholar
  15. 15.
    Chen, W., Sun, T., Yang, X., Wang, L.: Face detection based on half face-template. In: The Ninth International Conference on Electronic Measurement & Instruments ICEMI’2009Google Scholar
  16. 16.
    Wang, Qiang, Wu, Jing, Long, Chengnian, Li, Bo: P-FAD: real-time face detection scheme on embedded smart cameras. IEEE J. Emerging Sel. Top. Circuits Syst. 3(2), 210–222 (2013)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.-Y., Hsu, W.H., Mark Liao, H.-Y.: Automatic training image acquisition and effective feature selection from community-contributed photos for facial attribute detection. IEEE Trans. Multimedia 15(6), 1388 (2013)Google Scholar
  18. 18.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. In: Technical Report, MSR-TR-2010-66, June 2010Google Scholar
  19. 19.
    Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view face detection. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 1550-5499/05Google Scholar
  20. 20.
    Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view face detection. In: Proceedings of ICCV (2005)Google Scholar
  21. 21.
    Hassan Anvar, S.M., Yau, W.-Y., Teoh, E.K.: Multiview face detection and registration requiring minimal manual intervention. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2484–2497 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Regularized transfer boosting for face detection across spectrum. IEEE Signal Process. Lett. 19(3), (2012)Google Scholar
  23. 23.
    Saghafi, M.A., Hussain, A., Zaman, H.B., Md. Saad, M.H.: Review of person re-identification techniques. In: IET Computer Vision (2013)Google Scholar
  24. 24.
    Vezzani, R., Baltieri, D., Cucchiara, R.: People re-identification in surveillance and forensics: a survey. University of Modena and Reggio Emilia. ACM Comput. Surv. 1(1), Article 1, (2013)Google Scholar
  25. 25.
    Kviatkovsky, I., Adam, A., Rivlin, E.: Color invariants for person reidentification. IEEE Trans. Patt. Anal. Mach. Intell. 35(7), 1622–1634 (2013)CrossRefGoogle Scholar
  26. 26.
    Kuo, C.-H., Khamis, S., Shet, V.: Person re-identification using semantic color names and rank boost. In: Proceedings of WACV, pp. 281–287 (2013)Google Scholar
  27. 27.
    Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., Li, S.: Salient color names for person re-identification. In: Proceedings ECCV, pp. 536–551 (2014)Google Scholar
  28. 28.
    Liu, C., Gong, S., Loy, C.C.: On-the-fly feature importance mining for person re-identification. Pattern Recogn. 47(4), 1602–1615 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhao, R., Ouyang, W., Wang, X.: Learning mid-level filters for person re-identification. In: Proceedings of CVPR, pp. 144–151 (2014)Google Scholar
  30. 30.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of CVPR Workshop, pp. 2360–2367 (2010)Google Scholar
  31. 31.
    An, L., Yang, S., Bhanu, B.: Person re-identification by robust canonical correlation analysis. IEEE Signal Process. Lett. 22(8), (2015)Google Scholar
  32. 32.
    Liu, H., Qi, M., Jiang, J.: Kernelized relaxed margin components analysis for person re-identification. IEEE Signal Process. Lett. 22(7), (2015)Google Scholar
  33. 33.
    Martinel, N., Micheloni, C.: Classification of local eigen-dissimilarities for person re-identification. IEEE Signal Process. Lett. 22(4), (2015)Google Scholar
  34. 34.
    Liu, K., Zhao, Z., Member, IEEE, Cai, A.: Datum-adaptive local metric learning for person re-identification. IEEE Signal Process. Lett. 22(9), (2015)Google Scholar
  35. 35.
    Ma, L., Yang, X., Tao, D.: Person re-identification over camera networks using multi-task distance metric learning. IEEE Trans. Image Process. 23(8), (2014)Google Scholar
  36. 36.
    Ma, A.J., Li, J., Yuen, P.C., Senior Member, IEEE, Li, P.: Cross-domain person re-identification using domain adaptation ranking SVMs. IEEE Trans. Image Process. 24(5), (2015)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringTagore Engineering CollegeChennaiIndia
  2. 2.Department of Computer Science EngineeringSRM UniversityChennaiIndia

Personalised recommendations