Biclustering Using Venus Flytrap Optimization Algorithm

  • R. GowriEmail author
  • S. Sivabalan
  • R. Rathipriya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 410)


Digging up the coregulated gene biclusters using a novel Nature-inspired Meta-Heuristic algorithm named Venus Flytrap Optimization (VFO). This optimized biclustering approach will yield highly correlated biclusters. This algorithm is based on the rapid closure behavior of the Venus Flytrap (Dionaea Muscipula) leaves. Gene temperament is understood from their exposure under specific conditions. So far, Optimal Biclusters are extracted using various optimization algorithms like PSO, Genetic algorithm, SA, etc., were used for this kind of analysis. In this paper, VFO algorithm is used for extracting optimal biclusters and results are compared with those obtained by applying PSO, SA, PSO-SA Biclustering algorithms.


Venus flytrap optimization VFO Biclustering Gene expression Nature-Inspired optimization Green intelligence algorithm 


  1. 1.
    Thangavel, K., Bagyamani, J., Rathipriya, R.: Novel hybrid PSO-SA model for biclustering of expression data. Proc. Int. Conf. Commun. Technol. Syst. Design 30, 1048–1055 (2011)Google Scholar
  2. 2.
    Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nat. Genet. 22:281–285Google Scholar
  3. 3.
    Darwin, C.: Insectivorous Plants. Murray, London (1875)CrossRefGoogle Scholar
  4. 4.
    Volkov, A.G., Adesina, T., Jovanov, E.: Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal. Behav. 2, 139–144 (2007)CrossRefGoogle Scholar
  5. 5.
    Yang, Ruoting, Lenaghan, Scott C., Zhang, Mingjun, Xia, Lijin: A mathematical model on the closing and opening mechanism for Venus flytrap. Plant Signal. Behav. 5(8), 968–978 (2010)CrossRefGoogle Scholar
  6. 6.
    Volkov, A.G., Adesina, T., Jovanov, E.: Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal. Behav. 2(3):139–145 (2007)Google Scholar
  7. 7.
    Thangavel, K., Rathipriya, R.: mining correlated bicluster from web usage data using discrete firefly algorithm based biclustering approach. Int. J. Math. Comput. Nat. Phys. Eng. 8(4), 704–709 (2014)Google Scholar
  8. 8.
    Hodick, D., Sievers, A.: The action potential of Dionaeamuscipula Ellis. Planta 174, 8–18 (1988)CrossRefGoogle Scholar
  9. 9.
    Fagerberg, W.R., Howe, D.G.: A quantitative study of tissue dynamics in Venus’s flytrap Dionaeamuscipula (Droseraceae) II. Trap reopening. Am. J. Bot. 83:836–42 (1996)Google Scholar
  10. 10.
    Forterre, Y., Skotheim, J.M., Dumais, J., Mahadevan, L.: How the Venus flytrap snaps. Nature 433:421–425 (2005)Google Scholar
  11. 11.
    Gowri, R., Rathipriya, R.: Extraction of Protein Sequence Motif Information using PSO K-Means. J. Network Inf. Secur. 8–13 (2014)Google Scholar
  12. 12.
    Balamurugan, R., Natarajan, A.M., Premalatha, K.: Comparative study on swarm intelligence techniques for biclustering of microarray gene expression data. Int. J. Comput. Control Quantum Inf. Eng. 8(2), 323–329 (2014)Google Scholar
  13. 13.
    Saber, H.B., Elloumi, M.: DNA microarray data analysis: a new survey on biclustering. Int. J. Comput. Biol. 4(1):21–37 (2015)Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Computer SciencePeriyar UniversitySalemIndia

Personalised recommendations