Skip to main content

Two Consistent Many-Valued Logics for Paraconsistent Phenomena

  • 638 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 152)

Abstract

In this reviewing paper, we recall the main results of our papers [24, 31] where we introduced two paraconsistent semantics for Pavelka style fuzzy logic. Each logic formula \(\alpha \) is associated with a \(2 \times 2\) matrix called evidence matrix. The two semantics are consistent if they are seen from ‘outside’; the structure of the set of the evidence matrices \({{\textit{M}}}\) is an MV-algebra and there is nothing paraconsistent there. However, seen from ‘inside,’ that is, in the construction of a single evidence matrix paraconsistency comes in, truth and falsehood are not each others complements and there is also contradiction and lack of information (unknown) involved. Moreover, we discuss the possible applications of the two logics in real-world phenomena.

Keywords

  • Mathematical fuzzy logic
  • Paraconsistent logic
  • MV-algebra

Mathematics Subject Classification (2000)

  • 03-02
  • 03620
  • 06D35

The first author acknowledges the support by the Czech Technical University in Prague under project SGS12/ 187/ OHK3/ 3T/ 13. The second author has been partially supported by grant TIN2012-32482 from the Government of Spain and excellence network S2013/ICE–2845 of the Region of Madrid.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arieli, O., Avron, A.: Reasoning with logical bilattices. J. Logic Lang. Inform. 5, 25–63 (1996)

    Google Scholar 

  2. Barbon, J.S.; Guido, R.C.; Vieira, L.S.: A neural-network approach for speech features classication based on paraconsistent logic. In: Proceedings of the 11th IEEE conference International Symposium Multimedia, pp. 567–570. San Dego, CA, 14–16 Dec. 2009

    Google Scholar 

  3. Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dumme, J. (eds.) Modern Uses of Multiple Valued Logics, pp. 8–37. D. Reidel, Dordrecht (1977)

    Google Scholar 

  4. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 476–490 (1958)

    CrossRef  Google Scholar 

  5. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning, Trends in Logic, vol. 7. Kluwer Academic Publishers, Dordrecht (2000)

    CrossRef  Google Scholar 

  6. Cornelis, C., Deschrijver, G., Kerre, E.E.: Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets Syst. 157(5), 622–627 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. da Silva Lopes, H.F., Abe, J.M., Anghinah, R.: Application of Paraconsistent artificial neural networks as a method of aid in the diagnosis of alzheimer disease. J. Med. Syst. 34, 1073–81 (2010)

    Google Scholar 

  8. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic J. IGPL 16(2), 195–216 (2008)

    CrossRef  MATH  Google Scholar 

  9. Ginsberg, M.K.: Multivalued logics: a uniform approach to inference in artificial intelligence. Comput. Intell. 4, 265–316 (1988)

    CrossRef  Google Scholar 

  10. Gluschankof, D.: Prime deductive systems and injective objects in the algebras of Łukasiewicz infinite-valued calculi. Algebra Univers. 29, 354–377 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer (1998)

    Google Scholar 

  12. Jun, M., Zhang, G., Lu, J.: A state-based knowledge representation approach for information logical inconsistency detection in warning systems. J. Knowl.-Based Syst. 23, 125–131 (2010)

    CrossRef  Google Scholar 

  13. Kukkurainen, P., Turunen, E.: Many-valued similarity reasoning. An axiomatic approach. Int. J. Multiple Valued Logic 8, 751–760 (2002)

    Google Scholar 

  14. Nakamatsu, K., Suito, H., Abe, J.M, Suzuki, A.: Paraconsistent logic program based safety verification for air traffic control. IEEE Int. Conf. Syst. Man Cybern. 6, 5 (2002)

    Google Scholar 

  15. Novák, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)

    CrossRef  MATH  Google Scholar 

  16. Odintsov, S.P.: On axiomatizing Shramko-Wansing’s logic. Stud. Logica 93, 407–428 (2009)

    CrossRef  MathSciNet  Google Scholar 

  17. Öztürk, M., Tsoukiás, A.: Modeling uncertain positive and negative reasons in decision aiding. Decis. Support Syst. 43, 1512–1526 (2007)

    CrossRef  Google Scholar 

  18. Pavelka, J.: On fuzzy logic I, II, III. Zeitsch. f. Math. Logik 25, 45–52, 119–134, 447–464 (1979)

    Google Scholar 

  19. Perny, P., Tsoukiás, A.: On the continuous extensions of four valued logic for preference modeling. In: Proceedings of the IPMU Conference, pp. 302–309 (1998)

    Google Scholar 

  20. Priest, G., Tanaka, K., Weber, Z.: ‘Paraconsistent Logic’, The Stanford Encyclopedia of Philosophy (Fall 2013 Edition), Edward N. Zalta (ed.), URL = \(\langle \)

    Google Scholar 

  21. Rivieccio, U.: Neutrosophic logics: prospects and problems. Fuzzy Sets Syst. 159, 1860–1868 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Rodríguez, J.T., Vitoriano, B., Montero, J.: Classification of disasters and emergencies under bipolar knowledge representation. In: Vitoriano, B., Montero, J., Ruan, D. (eds.) Decision Aid Models for Disaster Management and Emergencies. Atlantis Computational Intelligence Systems, vol. 7, pp. 209–232. Atlantis Press, Paris (2013)

    Google Scholar 

  23. Rodríguez, J.T., Vitoriano, B., Montero, J.: Fuzzy Dissimilarity–based classification for disaster initial assessment. In: Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technologies, pp. 448–455 (2013)

    Google Scholar 

  24. Rodríguez, J.T., Turunen, E., Ruan, D., Montero, J.: Another paraconsistent algebraic semantics for Łukasiewicz-Pavelka logic. Another paraconsistent algebraic semantics for Lukasiewicz-Pavelka logic. Fuzzy Sets Syst. 242, 132–147 (2014)

    CrossRef  Google Scholar 

  25. Shramko, Y., Wansing, H.: Hypercontradictions, generalized truth values, and logics of truth and falsehood. J. Logic Lang. Inform. 15, 403–424 (2006)

    Google Scholar 

  26. Shramko, Y., Wansing, H.: Some useful 16-valued logics: how a computer network should think. J. Philos. Logic 34, 121–153 (2005)

    Google Scholar 

  27. Tsoukiás, A.: A first order, four valued, weakly Paraconsistent logic and its relation to rough sets semantics. Foundations Comput. Dec. Sci. 12, 85–108 (2002)

    MATH  Google Scholar 

  28. Turunen, E.: Well-defined fuzzy sentential logic. Math. Logic Q. 41, 236–248 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Turunen, E.: Mathematics behind Fuzzy Logic. Springer (1999)

    Google Scholar 

  30. Turunen, E.: Interpreting GUHA data mining logic in paraconsistent fuzzy logic framework. In: Tsoukiás, A., Rossi, F. (eds.) Algorithmic Decision Theory, LNCS, vol. 5783. Springer, Berlin/Heidelberg. pp. 284–293 (2009)

    Google Scholar 

  31. Turunen, E., Öztürk, M., Tsoukiás, A.: Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Sets Syst. 161, 1926–1940 (2010)

    CrossRef  MATH  Google Scholar 

  32. Turunen, E.: Complete MV–algebra Valued Pavelka Logic. (submitted)

    Google Scholar 

  33. Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.E.: Triangle algebras: a formal logic approach to interval-valued residuated lattices. Fuzzy Sets Syst. 159(9), 1042–1060 (2008)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esko Turunen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Turunen, E., Rodríguez, J.T. (2015). Two Consistent Many-Valued Logics for Paraconsistent Phenomena. In: Beziau, JY., Chakraborty, M., Dutta, S. (eds) New Directions in Paraconsistent Logic. Springer Proceedings in Mathematics & Statistics, vol 152. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2719-9_8

Download citation