Abstract
After describing the two formulations of the principle of non contradiction in modern logic \(T \vdash \lnot (p \wedge \lnot p)\) (NC) and \(T, p, \lnot p \vdash q\) (EC) and explaining that three-valued matrices can be used to easily prove their independence, we investigate the possibilities to construct strong paraconsistent negations, i.e., for which neither (NC) nor (EC) holds, using three-valued logical matrices.
Keywords
- Principle of non contradiction
- Negation
- Paraconsistent logic
- Many-valued logic
Mathematics Subject Classification (2000)
- Primary 03B53
- Secondary 03B50
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
This means that reflexivity, monotonicity, transitivity hold as well as substitution, see [17].
- 3.
We are working in abstract logic, not in proof theory, so we are not considering that these are rules.
- 4.
Same remark as in the previous footnote.
- 5.
Since we are working with truth-tables which are conservative extensions of the classical ones, we omit the classical parts in all tables built to check De Morgan laws hereafter.
References
Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Form. Log. 7, 103–105
Arieli, O., Avron, A.: Three-valued paraconsistent propositional logics. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic. Springer India (2015), pp. 91–129
Beziau, J.-Y.: Logiques construites suivant les méthodes de da Costa. Log. Anal. 131–132, 259–272 (1990)
Beziau, J.-Y.: Nouveaux résultats et nouveau regard sur la logique paraconsistante C1. Log. Anal. 141–142, 45–48 (1993)
Beziau, J.-Y.: Théorie législative de la négation pure. Log. Anal. 147–148, 209–225 (1994)
Beziau, J.-Y.: Idempotent full paraconsistent negations are not algebraizable. Notre Dame J. Form. Log. 39, 135–139 (1998)
Beziau, J.-Y.: What is paraconsistent logic?. In: Batens, D. et al. (eds.) Frontiers of Paraconsistent Logic, pp. 95–111. Research Studies Press, Baldock (2000)
Beziau, J.-Y.: Are paraconsistent negations negations? In: Carnielli, W. et al. (eds.) Paraconsistency: the Logical Way to the Inconsistent, pp. 465–486. Marcel Dekker, New-York (2002)
Beziau, J.-Y.: History of the concept of truth-value. In: Gabbay, D.M., Pelletier, J., Woods, J. (eds.) Handbook of the History of Logic, vol. 11. Elsevier, Amsteradm (2012)
Beziau, J.-Y.: Trivial dialetheism and the logic of paradox. Log. Logic. Philos. 25 (2016)
da Costa, N.C.A.: Calculs propositionnels pour les systémes formels inconsistants. Cr. R. Acad. Sc. Paris 257, 3790–3793 (1963)
da Costa, N.C.A., Guillaume, M.: Négations composées et Loi de Peirce dans les systémes Cn. Portugalia Mathematica 24, 201–210 (1965)
D’Ottaviano, I.M.L., da Costa, N.C.A.: Sur un probléme de Jaśkowski. Cr. R. Acad. Sc. Paris 270, 1349–1353 (1970)
Epstein, R.L.: The Semantic Foundations of Logic. Volume 1: Propositional Logics. Kluwer, Dordrecht (1990)
Humberstone, L.: Beziau’s translation paradox. Theoria 71, 138–181 (2005)
Kleene, S.: On a notation for ordinal numbers. J. Symbolic Log. 3, 150–155 (1938)
Łoś, J., Suszko, R.: Remarks on sentential logics. Indigationes Math. 10, 177–183 (1958)
Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficny 5, 170–171 (1920)
Marcos, J.: 8K solutions and semi-solutions to a problem of da Costa
Priest, G.: The logic of paradox. J. Philos. Log. 8, 219–241 (1979)
Sette, A.M.: On the propositional calculus P1. Notas e comunicacões de matemática, 17 (1971)
Urbas, I.: Paraconsistency and the C-ysytems of da Costa. Notre Dame J. Form. Log. 30, 583–597 (1989)
Acknowledgments
This work starts during a seminar at the Federal University of Rio de Janeiro (August 2013–December 2013) conducted by J.Y. Beziau during the visit of Anne Franceschetto who was visiting Brazil to know more about paraconsistent logic. Other students, in particular Rodrigo de Almeida and Edson Vinicius Bezerra, had an active participation to this seminar
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer India
About this paper
Cite this paper
Beziau, JY., Franceschetto, A. (2015). Strong Three-Valued Paraconsistent Logics. In: Beziau, JY., Chakraborty, M., Dutta, S. (eds) New Directions in Paraconsistent Logic. Springer Proceedings in Mathematics & Statistics, vol 152. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2719-9_5
Download citation
DOI: https://doi.org/10.1007/978-81-322-2719-9_5
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-2717-5
Online ISBN: 978-81-322-2719-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)