The Evil Twin: The Basics of Complement-Toposes

  • Luis Estrada-González
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 152)


In this paper I describe how several notions and constructions in topos logic can be dualized, giving rise to complement-toposes with their paraconsistent internal logic, instead of the usual standard toposes with their intuitionistic logic.


Standard topos Complement-topos Internal logic 

Mathematics Subject Classification (2000)

03A05 03B53 03G30 18B25 


  1. 1.
    Awodey, S.: Structure in mathematics and logic: a categorical perspective. Philos. Math. 4(3), 209–237 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Awodey, S.: Continuity and logical completeness: an application of sheaf theory and topoi. In: Johan van Benthem, M.R., Heinzmann, G., Visser, H. (eds.) The Age of Alternative Logics. Assesing Philosophy of Logic and Mathematics Today, pp. 139–149. Springer, The Netherlands (2006)Google Scholar
  3. 3.
    Bell, J.L.: Lectures on the foundations of mathematics.
  4. 4.
    Bell, J.L.: From absolute to local mathematics. Synthese 69, 409–426 (1986)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bell, J.L.: Toposes and Local Set Theories: An Introduction. Oxford Clarendon Press (1988)Google Scholar
  6. 6.
    Bell, J.L.: Oppositions and paradoxes in mathematics and philosophy. Axiomathes 15(2), 165–180 (2005)CrossRefGoogle Scholar
  7. 7.
    Béziau, J.-Y.: S5 is a paraconsistent logic and so is first-order classical logic. Logical Investigations 9, 301–309 (2002)Google Scholar
  8. 8.
    Borceux, F.: Handbook of Categorical Algebra. Volume 3: Categories of Sheaves.In: Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press (1994)Google Scholar
  9. 9.
    Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L.: New dimensions on translations between logics. Log. Univers. 3(1), 1–18 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Czermak, J.: A remark on Gentzen’s calculus of sequents. Notre Dame J. Form. Logic 18(3), 471–474 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    de Queiroz, G.d.S.: On the duality between intuitionism and paraconsistency. Ph.D. thesis, Universidade Estadual de Campinas (1998). In PortugueseGoogle Scholar
  12. 12.
    Estrada-González, L.: Quaternality in a topos-theoretical setting. Unpublished typescript, 201XGoogle Scholar
  13. 13.
    Estrada-González, L.: Complement-topoi and dual intuitionistic logic. Australas. J. Logic 9, 26–44 (2010)Google Scholar
  14. 14.
    Estrada-González, L.: Models of possibilism and trivialism. Logic Log. Philos. 22(4), 175–205 (2012)Google Scholar
  15. 15.
    Estrada-González, L.: Disputing the many-valuedness of topos logic. In: Béziau, J.-Y., D’Ottaviano, I.M.L., Costa-Leite, A. (eds.) Aftermath of the Logical Paradise, pp. 193–213. CLE-Universidade Estadual de Campinas, Campinas (2015)Google Scholar
  16. 16.
    Estrada-González, L.: From (paraconsistent) topos logic to Universal (topos) logic. In: Koslow, A., Buchsbaum, A.R.d.V. (eds.) The Road to Universal Logic. Festschrift for Jean-Yves Béziau, vol. 2, pp. 263–295. Birkhäuser (2015)Google Scholar
  17. 17.
    Goldblatt, R.: Grothendieck topology as geometric modality. Math. Logic Q. 27(31–35), 495–529 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Studies in Logic and the Foundations of Mathematics, vol. 98. North Holland Publishing Co., Amsterdam (1984). Revised editionGoogle Scholar
  19. 19.
    Goodman, N.: The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 27(8–10), 119–126 (2002)Google Scholar
  20. 20.
    Goré, R.P.: Dual intuitionistic logic revisited. In: Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. Lecture Notes In Computer Science, vol. 1847, pp. 252–267. Springer, London (2000)Google Scholar
  21. 21.
    Iturrioz, L.: Les algèbres de Heyting-Brouwer et de Łukasiewicz trivalentes. Notre Dame J. Form. Logic 17(1), 119–126 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    James, W., Mortensen, C.: Categories, sheaves, and paraconsistent logic. Unpublished typescript (1997)Google Scholar
  23. 23.
    Lawvere, F.W: Quantifiers and sheaves, In: Berger, M., Dieudonné, J., Leray, J., Lions, J.L., Malliavin, P., and Serre, J.P. (eds.) Actes du Congrés International des Mathematiciens, 329–334, Nice, Gauthier-Villars (1970)Google Scholar
  24. 24.
    Lawvere, F.W.: Continuously variable sets: algebraic geometry = geometric logic. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium ‘73 (Bristol, 1973), pp. 135–156. North Holland, Amsterdam (1975)Google Scholar
  25. 25.
    Lawvere, F.W.: Variable quantities and variable structures in topoi. In: Heller, A., Tierney, M. (eds.) Algebra, Topology, and Category Theory. A Collection of Papers in Honor of Samuel Eilenberg, pp. 101–131. Academic Press (1976)Google Scholar
  26. 26.
    Lawvere, F.W.: Introduction. In: Lawvere, F.W., Schanuel, S.H. (eds.) Categories in Continuum Physics. Springer (1982)Google Scholar
  27. 27.
    Lawvere, F.W.: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Proceedings of the 1990 Meeting on Category Theory held in Como, Italy. Lecture Notes in Mathematics, vol. 1488, pp. 279–281. Springer (1991)Google Scholar
  28. 28.
    Lawvere, F.W.: Tools for the advancement of objective logic: closed categories and toposes. In: Macnamara, J., Reyes, G.E. (eds.) The Logical Foundations of Cognition, pp. 43–56. Oxford University Press (1994)Google Scholar
  29. 29.
    Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics. A First Introduction to Categories. Cambridge University Press (2000). Second reprintGoogle Scholar
  31. 31.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer (1992)Google Scholar
  32. 32.
    Macnab, D.S.: An Algebraic Study of Modal Operators on Heyting Algebras, with Applications to Topology and Sheafification. Ph.D. thesis, University of Aberdeen (1976)Google Scholar
  33. 33.
    Macnab, D.S.: Modal operators on Heyting algebras. Algebra Univers. 12(1), 5–29 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Marcos, J.a.: Ineffable inconsistencies. In: Béziau, J.-Y., Carnielli, W.A. (eds.) Paraconsistency with No Frontiers, pp. 301–311. Elsevier, Amsterdam (2006)Google Scholar
  35. 35.
    McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of Lewis and Heyting. J. Symb. Logic 13(1), 1–15 (1948)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    McLarty, C.: Book review: John Bell. Introduction to toposes and local set theory. Notre Dame J. Form. Logic 31(1), 150–161 (1989)CrossRefGoogle Scholar
  37. 37.
    McLarty, C.: Elementary Categories. Elementary Toposes. Oxford Clarendon Press, Toronto (1995)zbMATHGoogle Scholar
  38. 38.
    McLarty, C.: Two constructivist aspects of category theory. Philosophia Scientiæ 27(Cahier spécial 6), 95–114 (2006)Google Scholar
  39. 39.
    Mortensen, C.: Inconsistent Mathematics. Kluwer Mathematics and Its Applications Series. Kluwer Academic Publishers (1995)Google Scholar
  40. 40.
    Mortensen, C.: Closed set logic. In: Brady, R.T. (ed.) Relevant Logics and Their Rivals, vol. II, pp. 254–262. Ashgate Publishing, Aldershot (2003)Google Scholar
  41. 41.
    Popper, K.: On the theory of deduction, parts I and II. Indagationes Mathematicae 10, 173–183 and 322–331 (1948)Google Scholar
  42. 42.
    Rauszer, C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundam. Math. 83, 219–249 (1974)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Diss. Math. 167, 1–62 (1980)MathSciNetGoogle Scholar
  44. 44.
    Reyes, G., Zawadowski, M.: Formal systems for modal operators on locales. Stud. Logica 52(4), 595–613 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Reyes, G., Zolfaghari, H.: Topos-theoretic approaches to modality. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Proceedings of the 1990 Meeting on Category Theory held in Como, Italy. Lecture Notes in Mathematics, vol. 1488, pp. 359–378. Springer (1991)Google Scholar
  46. 46.
    Reyes, G., Zolfaghari, H.: Bi-Heyting algebras, toposes and modalities. J. Philos. Logic 25(1), 25–43 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Rodin, A.: Axiomatic Method and Category Theory.
  48. 48.
    Shramko, Y.: Dual intuitionistic logic and a variety of negations: the logic of scientific research. Stud. Logica 80(2–3), 347–367 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Tierney, M.: Sheaf theory and the continuum hypothesis. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geometry and Logic. Lecture Notes in Mathematics, vol. 274, pp. 13–42. Springer (1972)Google Scholar
  50. 50.
    Urbas, I.: Dual intuitionistic logic. Notre Dame J. Form. Logic 37(3), 440–451 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    van Inwagen, P.: Metaphysics. Westview Press, Boulder, Colorado (2008). Third EditionGoogle Scholar
  52. 52.
    Vasyukov, V.: Structuring the universe of universal logic. Log. Univers. 1(2), 277–294 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    Vigna, S.: A guided tour in the topos of graphs. Technical Report 199–7, Università di Milano, Dipartimento di Scienze dell’Informazione (1997).

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Instituto de Investigaciones FilosóficasUniversidad Nacional Autónoma de MéxicoCoyoacánMéxico

Personalised recommendations