Skip to main content

Consequence–Inconsistency Interrelation: In the Framework of Paraconsistent Logics

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 152)

Abstract

This paper deals with a relativized notion of inconsistency, which turns out to be equivalent to a non-explosive consequence under certain sets of axiomatization in a propositional language. The paper also shows that several existing paraconsistent systems fall under this characterization.

Keywords

  • Non-explosive consequence
  • Inconsistency
  • Paraconsistent logics

Mathematics Subject Classification (2000)

  • 03B53

The first author of this paper acknowledges the support obtained from the Institute of Mathematical Sciences, Chennai, India, during the initial phase of preparation of this paper; the final preparation of this paper has been carried out during the tenure of an ERCIM Alain Bensoussan fellowship.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arruda, A.I.: Aspects of the historical development of paraconsistent logic. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 99-129. Philosophia Verlag, Nunchen, Handen, Wien (1989)

    Google Scholar 

  2. Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Form. Logic VII(1), 103–106 (1966)

    Google Scholar 

  3. Avron, A.: Natural 3-valued logics: characterization and proof theory. J. Symb. Logic 56, 276–294 (1991)

    Google Scholar 

  4. Avron, A.: Simple consequence relations. Inf. Comput. 92, 105–139 (1991)

    Google Scholar 

  5. Batens, D.: A completeness-proof method for extensions of the implicational fragment of the propositional calculus. Notre Dame J. Form. Logic 21(3), 509–517 (1981)

    Google Scholar 

  6. Carnielli, A.W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, pp. 1-93 (2003)

    Google Scholar 

  7. da Costa, N.: Calculus propositionnels pour less systèmas formels inconsistants. Comptes Rendus Helodomadaires des Séances de I’ Academie des Sciences Paris, Series A 257, 3790–3792 (1963)

    Google Scholar 

  8. da Costa, N.: On the theory of inconsistent formal systems. Notre Dame J. Form. Logic XV, 497-510 (1974)

    Google Scholar 

  9. Dunn, M.J.: Star and perp: two treatments of negation. Philos. Perspect. Lang. Log. 7, 331-357 (1993)

    Google Scholar 

  10. Dunn, M.J.: A comparative study of various model theoretic treatments of negation: a history of formal negation. In: Gabbay, D.M., Wansing, H. (eds.) What is Negation?, pp. 23-51 (1999)

    Google Scholar 

  11. Dutta, S., Chakraborty, M.K.: Negation and paraconsistent logics. Log. Univers. 5(1), 165–176 (2011)

    Google Scholar 

  12. Gentzen, G.: Investigations into logical deductions. In: The Collected Papers of Gentzen, G., Szabo, M.E. (eds.), pp. 68-131. North Holland Publications, Amsterdam (1969)

    Google Scholar 

  13. Priest, G.: The logic of paradox. J. Philos. Logic 8, 219–241 (1979)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Priest, G.: Paraconsistent logic. In: The Handbook of Philosophical Logic, vol. 6, pp. 287-393 (2002)

    Google Scholar 

  15. Restall, G.: Laws of non-contradiction, laws of the excluded middle, and logics. In: Priest, G., Beall, J.C., Garb-Armour, J.C. (eds.) The Law of Non-contradiction, pp. 73-84 (2004)

    Google Scholar 

  16. Surma, S.J.: The growth of logic out of the foundational research in mathematics. In: Agazzi, E. (ed.) Modern Logic-A Survey, pp. 15-33. D. Reidel Publishing co., Dordrecht (1981)

    Google Scholar 

  17. Tennant, N.: An anti-realist critique to dialetheism. In: Priest, Beall, and Garb-Armour (eds.) The Law of Non-contradiction, pp. 355-384 (2004)

    Google Scholar 

  18. Tuziak, R.: Paraconsistent extensions of positive logic. Bull. Sect. Logic 25(1), 15–20 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Vasyukov, V.L.: A new axiomatization of Jaśkowski’s discussive logic. Logic Log. Philos. 9, 35-46 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Dutta, S., Chakraborty, M.K. (2015). Consequence–Inconsistency Interrelation: In the Framework of Paraconsistent Logics. In: Beziau, JY., Chakraborty, M., Dutta, S. (eds) New Directions in Paraconsistent Logic. Springer Proceedings in Mathematics & Statistics, vol 152. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2719-9_12

Download citation