Skip to main content

Biofortification with Microorganisms: Present Status and Future Challenges

  • Chapter
  • First Online:
Book cover Biofortification of Food Crops

Abstract

Biofortification is the process of adding essential micronutrients and other health-promoting compounds to crops or foods to improve their nutritional value. This is imperative as the diets of over two-thirds of the world’s population lack one or more essential mineral elements and the three staple crops, rice, maize, and wheat, which provide nearly half of the calories consumed by humans, are deficient in micronutrients. A large body of information exists on augmentation through breeding approaches, both conventional and molecular, or through agronomic management practices. Other options include dietary diversification, mineral supplementation, food fortification, or increase in the concentrations and/or bioavailability of mineral elements in the produce. With the advent of metagenomic and next-generation sequencing tools and the development of the “holobiome” concept, the significance of microbiome in the productivity of soil and crops is becoming more evident. Plant growth-promoting rhizobacteria (PGPR) represent a wide variety of microorganisms, growing in association with plants. They lead to stimulation of growth of the host, due to the increased mobility, uptake, and enrichment of nutrients in the plant. Their significance in improving nutrient use efficiency of applied fertilizers and improving nutrient uptake in problematic soils or denuded lands is well established. However, they are less explored options in biofortification strategies and need to be included in agronomic and breeding approaches to develop effective biofortification strategies for the staple crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2015) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr (In Press)

    Google Scholar 

  • Agarwal PK, Jaiswal SK, Prasanna BM, Hossain F, Saha S, Guleria SK, Gupta HS (2012) Genetic variability and stability for kernel iron and zinc concentration in maize (Zea mays L.) genotypes. Indian J Genet 74:421–428

    Google Scholar 

  • Ahonen-Jonnarth U, Van Hees PAW, Lundstrom US, Finlay RD (2012) Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytol 146:557–567

    Article  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Artursson V, Finlay RD, Jansson J (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Babu S, Prasanna R, Bidyarani N, Singh R (2015) Analysing the colonization of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J Appl Phycol 27(1):327–338. doi:10.1007/s10811-014-0322-6

    Article  CAS  Google Scholar 

  • Balakrishnan N, Subramanian KS (2012) Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Maydica 57:129–38

    Google Scholar 

  • Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 21:397–400

    Article  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) Exploiting new tools for iron biofortification of rice. Biotechnol Adv 31:1624–1633

    Article  CAS  Google Scholar 

  • Bidyarani N, Prasanna R, Chawla G, Babu S, Singh R (2015) Deciphering the factors associated with the colonisation of rice plants by cyanobacteria. J Basic Microbiol 55(4):407–419. doi:10.1002/jobm.201400591

    Article  CAS  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutri Soc 62:403–411

    Article  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I (2012) Harvestplus zinc fertilizers project: Harvestzinc. Better Crops 96:17–19

    Google Scholar 

  • Cakmak I, Gulut KY, Marschner H, Graham RD (1994) Effects of Zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401–403

    Article  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Brau HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun A, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokman O, Ozturk L, Horst WJ (2010a) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010b) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Cavet JS, Graham AI, Meng W, Robinson NJ (2003) A cadmium-lead-sensing ArsR-SmtB repressor with novel sensory sites. Complementary metal discrimination by NmtR and CmtR in a common cytosol. J Biol Chem 278:44560–44566

    Article  CAS  Google Scholar 

  • De Caire GZ, De Cano MS, Palma RM, De Mule CZ (2000) Changes in soil activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biol Biochem 32:985–987

    Article  Google Scholar 

  • De Santiago A, Quintero JM, Aviles M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342:97–104

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28:871–879

    Article  Google Scholar 

  • Eleiwa ME, Eman R, Hamed ER, Shehata HS (2012) The role of biofertilizers and/or some micronutrients on wheat plant (Triticum aestivum L.) growth in newly reclaimed soil. J Med Plant Res 6:3359–3369

    CAS  Google Scholar 

  • Farre G, Twyman RM, Zhu C, Capell T, Christou P (2011) Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Curr Opin Biotechnol 22:245–251

    Article  CAS  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  Google Scholar 

  • Gayen D, Sarkar SN, Datta SK, Datta K (2013) Comparative analysis of nutritional compositions of transgenic high iron rice with its non-transgenic counterpart. Food Chem 138:835–840

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4:355. doi:10.3389/fmicb.2013.00355

    Article  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2008) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae) – prospects and challenges. Algal Res 2:69–97

    Article  Google Scholar 

  • Hardoim PR, Andreote FD, Reihold-Hurek R, Sessitch A, van Overbeek LS, van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164

    Article  CAS  Google Scholar 

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice field diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 191:95–103

    Article  Google Scholar 

  • Joshi AK, Crossa I, Arun B, Chand R, Trethowan R, Varagas M, Ortiz-Monasterio I (2010) Genotype- environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Res 116:268–277

    Article  Google Scholar 

  • Kamran A, Kubota H, Yang RC, Randhawa HS, Spaner D (2014) Relative performance of Canadian spring wheat cultivars under organic and conventional field conditions. Euphytica 196(1):13–24. doi:10.1007/s10681-013-1010-3

    Article  CAS  Google Scholar 

  • Karami M, Afyuni M, Khoshgoftarmanesh AH, Papritz A, Schulin DR (2009) Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J Agric Food Chem 57:10876–10882

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Lata, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 4:23–30

    Article  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Kloepper JW, Zablokovicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, The Netherlands, pp 315–326

    Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011) Effect of nitrogen on uptake, remobilization, and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342:149–164

    Article  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  Google Scholar 

  • Lehmann A, Rillig M (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – a meta-analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on Zinc nutrition in crop plants – a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Liljeroth E, Kuikman P, Vanveen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic-matter at different soil-nitrogen levels. Plant Soil 161:233–240

    Article  Google Scholar 

  • Mader P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  CAS  Google Scholar 

  • Mandal B, Vlek PLG, Mandal LN (1998) Beneficial effect of blue green algae and Azolla excluding supplying nitrogen, on wetland rice fields a review. Biol Fertil Soils 27:329–342

    Google Scholar 

  • Manjunath M, Prasanna R, Sharma P, Nain L, Singh R (2011) Developing PGPR consortia using novel genera- Providencia and Alcaligenes along with cyanobacteria for wheat. Arch Agron Soil Sci 57:873–887

    Google Scholar 

  • Maqubela MP, Mnkeni PNS, Issa MO, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soil enhances soil structure, fertility and maize growth. Plant Soil 315:79–92

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:393–396

    Article  Google Scholar 

  • Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanv H, Zelenskiy Y, Ozturk I, Cakmak I (2007) Iron and zinc grain density in common wheat grown in central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron (III)-phytosiderophore in barley roots. Plant J 46:563–572

    Article  CAS  Google Scholar 

  • Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio I, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio I, Trethwan R, Holm PB, Cakman I, Borg S, Tauris BEB, Brinch-Pedersen H (2011) Breeding, transformation and physiological strategies for the development of wheat with high zinc and iron grain concentration. In: Bonjean AP, Angus WJ, Van Ginkel M (eds) The world wheat book-a history of wheat breeding, vol 2., pp 951–977

    Google Scholar 

  • Oury FX, Leenhardt F, Remesy C, Chanliaud E, Dupperrier B, Balfouriera F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentration in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:88–105

    Article  Google Scholar 

  • Pfeiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangi JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110:6548–6553

    Article  Google Scholar 

  • Pooniya V, Shivay YS, Rana A, Nain L, Prasanna R (2012) Enhancing soil nutrient dynamics and productivity of basmati rice through residue incorporation and zinc fertilization. Eur J Agron 41:28–37

    Article  CAS  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  Google Scholar 

  • Prasanna BM, Mazumdar S, Chakraborti M, Hossain F, Manjaiah KM, Agarwal PK, Guleria SK, Gupta HS (2011) Genetic variability and genotype X environment interactions for kernel iron and zinc concentrations in maize (Zea mays L.) genotypes. Indian J Agric Sci 81:704–711

    CAS  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2012) Influence of co-inoculation of bacteria- cyanobacteria on crop yield and C- N sequestration in soil under rice crop. World J Microbiol Biotechnol 28:1223–1235

    Article  CAS  Google Scholar 

  • Prasanna R, Babu S, Rana A, Kabi SR, Chaudhary V, Gupta V, Kumar A, Shivay YS, Nain L, Pal RK (2013a) Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping sequence. Exp Agric 49:416–434

    Article  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Bab S, Kumar A, Shivay YS, Nain L (2013b) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 13:337–353

    Article  Google Scholar 

  • Prasanna R, Kumar A, Babu S, Chawla G, Chaudhary V, Singh S, Gupta V, Nain L, Saxena AK (2013c) Deciphering the biochemical spectrum of novel cyanobacterium based biofilms for use as inoculants. Biol Agric Hortic 29:145–158

    Article  Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366

    Article  Google Scholar 

  • Prasanna R, Babu S, Bidyarani N, Kumar A, Triveni S, Monga D, Mukherjee AK, Kranthi S, Gokte-Narkhedhar N, Adak A, Yadav K, Nain L, Saxena AK (2015a) Prospecting cyanobacteria fortified composts as plant growth promoting and biocontrol agents in cotton. Exp Agric 51:42–65

    Article  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015b) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1(1). doi:10.1080/23311932.2014.998507

    Google Scholar 

  • Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900

    Article  CAS  Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012a) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582

    Article  CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012b) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009a) Development and characterization of wheat- Aegilops kotschyi amphiploids with high grain iron and zinc. Plant Genet Res 7:271–280

    Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009b) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Res Crop Evol 56:53–64

    Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res 60:27–40

    Article  Google Scholar 

  • Rose MT, Pariasca-Tanaka J, Rose TJ, Wissuwa M (2011) Bicarbonate tolerance of Zn-efficient rice genotypes is not related to organic acid exudation, but to reduced solute leakage from roots. Funct Plant Biol 38:493–504

    CAS  Google Scholar 

  • Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M (2013) Enhancing phosphorus and zinc acquisition efficiency in rice a critical review of root traits and their potential utility in rice breeding. Ann Bot 112:331–345

    Article  CAS  Google Scholar 

  • Scheuring I, Yu DW (2013) How to assemble a beneficial microbiome in three easy steps. Ecol Lett 15:1300–1307

    Article  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59:89–94

    CAS  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Banziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3(3):307–327

    Article  Google Scholar 

  • Shivay YS, Kumar D, Prasad R, Ahlawat IPS (2008) Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea. Nutr Cycl Agroecosyst 80:181–188

    Article  CAS  Google Scholar 

  • Shivay YS, Prasad R, Rahal A (2010) Genotypic variation for productivity, zinc utilization efficiencies and kernel quality in aromatic rices under low available zinc conditions. J Plant Nutr 33:1835–1848

    Article  CAS  Google Scholar 

  • Shukla AK, Sharma SK, Tiwari R (2005) Nutrient depletion in the rice-wheat cropping system of the Indo-Gangetic plains. Better Crops 89:28–31

    Google Scholar 

  • Singh MV (2009) Micronutrient nutrient problems in soils of India and improvement for human health and animal health. Indian J Fert 5:19–26

    Google Scholar 

  • Sukalovic VHT, Vuletic MS, Veljovic J, Vucinic Z (2010) The effects of manganese and copper in vitro and in vivo on peroxidase catalytic cycles. J Plant Physiol 167:1550–1557

    Article  Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:105–116

    Article  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Turner JS, Robinson NJ (1995) Cyanobacterial metallothioneins biochemistry and molecular genetics. J Indus Microbiol 14:119–125

    Article  CAS  Google Scholar 

  • van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 53:365–372

    Article  Google Scholar 

  • Verma SK, Singh HN (1991) Evidence for energy-dependent copper efflux as a mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett 84:291–294

    Article  CAS  Google Scholar 

  • Watanabe A, Yamamoto Y (1971) Algal nitrogen fixation in the tropics. Plant Soil 35:403–413

    Article  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Expl Bot 55:353–364

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2011) Micronutrient deficiencies: iron deficiency anaemia. URL: http://www.who.int/nutrition/topics/ida/en/index.html

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

  • Yan L, Kerr PS (2002) Genetically engineered crops: their potential use for improvement of human nutrition. Nutr Rev 60:135–141

    Article  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho M, Capell T, Christou P (2012) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful for financial support from the Department of Biotechnology (DBT) and the Network Project on Microorganisms “Application of Microorganisms in Agriculture and Allied Sectors” by ICAR), New Delhi. Thanks are also due to the Division of Microbiology, IARI, New Delhi, for their infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Prasanna, R., Nain, L., Rana, A., Shivay, Y.S. (2016). Biofortification with Microorganisms: Present Status and Future Challenges. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_19

Download citation

Publish with us

Policies and ethics