Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 404))

Abstract

The prime objective of activity recognition is to recognize the actions performed by a person with the surrounding environment and forming different observation sets. It is necessary to choose the appropriate classifier for the data collected through accelerometer sensors incorporated in mobile phones, which have limited resources such as energy and computing power. In this paper, standard classification techniques of data mining like random forest (RF), multilayer perceptron (MLP), logistic regression, classification via regression, and J48 and RepTree have been implemented to compare the performance and accuracy of different classifiers by reducing the computational cost. In this experiment, it was found that RF required quite short time than MLP (0.64 vs. 270.07 s, respectively) to build the model and gives the better accuracy (92.6 % vs. 92.1 %, respectively). This study has concluded that RF has better performance score than other classification techniques applied in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cyber.-Part C: Appl. Rev. 40, 1–12 (2010)

    Article  Google Scholar 

  2. Davies, N., Siewiorek, D.P., Sukthankar, R.: Activity-based computing. IEEE Pervasive Comput. 7, 20–21 (2008)

    Article  Google Scholar 

  3. Krause, A., Smailagic, A., Siewiorek, D.: Context-aware mobile computing: learning context-dependent personal preferences from a wearable sensor array. IEEE Trans. Mobile Comput. 5, 113–127 (2006)

    Article  Google Scholar 

  4. Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108, 4–18 (2007)

    Article  Google Scholar 

  5. Lukowicz, P., Ward, J.A., Junker, H., Stager, M., Troster, G., Atrash, A., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Proceedings of the 2nd International Conference on Pervasive Computing, pp. 18–22 (2004)

    Google Scholar 

  6. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10, 156–167 (2006)

    Article  Google Scholar 

  7. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. Lect. Notes Comput. Sci. 3001, 1–17 (2004)

    Article  Google Scholar 

  8. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the 4th International Workshop on Knoweldge Discovery from Sensor Data, Washington DC, pp. 10–18 (2010b)

    Google Scholar 

  9. Krishnan, N., Colbry, D., Juillard, C., Panchanathan, S.: Real time human activity recognition using tri-axial accelerometers. In: Sensors, Signals and Information Processing Workshop (2008)

    Google Scholar 

  10. Krishnan, N., Panchanathan, S.: Analysis of low resolution accelerometer data for continuous human activity recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), pp. 3337–3340 (2008)

    Google Scholar 

  11. Tapia, E.M., Intille, S.S., et al.: Real-Time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: Proceedings of the 11th IEEE International Symposium on Wearable Computers, pp. 1–4 (2007)

    Google Scholar 

  12. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on body accelerometers. Sensors 10, 1154–1175 (2010)

    Article  Google Scholar 

  13. Foerster, F., Fahrenberg, J.: Motion pattern and posture: correctly assessed by calibrated accelerometers. Behav. Res. Methods Instrum. Comput. 32 (2000)

    Google Scholar 

  14. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10, 119–128 (2006)

    Article  Google Scholar 

  15. Lee, S.-W., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 1, 24–32 (2002)

    Article  Google Scholar 

  16. Nishkam, R., Nikhil, D., Preetham, M., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence, pp. 1541–1546 (2005)

    Google Scholar 

  17. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. SIGKDD Explor. Newslett. 12, 74–82 (2011)

    Google Scholar 

  18. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: some issues and experiences. 2, 17–24 (2000)

    Google Scholar 

  19. Thurau, C., Hlavac, V.: Pose primitive based human action recognition in videos or still images. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  20. Wu, O.W.H., Bui, A.T., Batalin, M., Au, L.K., Binney, J.D., Kaiser, W.J.: MEDIC: medical embedded device for individualized care. Artif. Intell. Med. 42, 137–152 (2008)

    Article  Google Scholar 

  21. Fahriddin, M., Song, M.G., Kim, J.Y., Na, S.Y.: Human Activity Recognition Using New Multi-Sensor Module in Mobile Environment (2011)

    Google Scholar 

  22. Deng, W.-Y., Zheng, Q.-H., Wang, Z.-M.: Cross-person activity recognition using reduced kernel extreme learning machine. Neural Netw. (2014)

    Google Scholar 

  23. http://www.cis.fordham.edu/wisdm

  24. WEKA at http://www.cs.waikato.ac.nz/~ml/weka

  25. Kappa: http://www.dmi.columbia.edu/homepages/chuangj/kappa

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajnaseni Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Dash, Y., Kumar, S., Patle, V.K. (2016). A Novel Data Mining Scheme for Smartphone Activity Recognition by Accelerometer Sensor. In: Das, S., Pal, T., Kar, S., Satapathy, S., Mandal, J. (eds) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. Advances in Intelligent Systems and Computing, vol 404. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2695-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2695-6_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2693-2

  • Online ISBN: 978-81-322-2695-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics