Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 404))

  • 774 Accesses

Abstract

Recently, ultra-wideband (UWB) energy detectors are developed enormously with compressed sensing (CS) theory in multipath fading environment. As wideband communication is sensitive to narrowband interference (NBI), it is necessary for efficient UWB energy detector to mitigate NBI-affected measurements without harming samples containing important information. According to the traditional sampling theorem, UWB requires huge bandwidth for short range communication with little utilization. To avoid this wastage of frequency band, CS process uses sub-Nyquist rate and provides compressed version of received signal. In this paper, reconstruction-based energy detector which is robust to NBI is presented. To mitigate the NBI-affected measurements, notch out method is employed at the detector in this article. Energy detection of the UWB detector before adding NBI and after mitigating NBI is compared. Experimental results show that the presented energy detector is robust to NBI due to superior performance of the notch out method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carbonelli, C., Mengali, U.: M-ppm noncoherent receivers for uwb applications. IEEE Trans. Wirel. Commun. 5(8), 2285–2294 (2006)

    Article  Google Scholar 

  3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gedalyahu, K., Eldar, Y.C.: Time-delay estimation from low-rate samples: a union of subspaces approach. IEEE Trans. Signal Process. 58(6), 3017–3031 (2010)

    Article  MathSciNet  Google Scholar 

  5. Ghavami, M., Michael, L.B., Kohno, R.: Ultra Wideband Signals and Systems in Communication Engineering, second edn. Wiley, New York (2007)

    Book  Google Scholar 

  6. Gishkori, S.: Compressive sampling for wireless communications. Ph.D. thesis, TU Delft, Fac. EEMCS (2014). ISBN 9789461863294

    Google Scholar 

  7. Gishkori, S., Leus, G.: Compressive sampling based energy detection of ultra-wideband pulse position modulation. IEEE Trans. Signal Process. 61(15), 3866–3879 (2013)

    Article  MathSciNet  Google Scholar 

  8. Kusuma, J., Maravic, I., Vetterli, M.: Sampling with finite rate of innovation:channel and timing estimation for UWB and GPS. In: New Frontiers in Telecommunications, vol. 5 (2003)

    Google Scholar 

  9. Needell, D., Tropp, J.A.: Cosamp: iterative signal recovery from incomplete and inaccurate samples. ACM Trans. Commun. 53(12), 93–100 (2010)

    Article  MATH  Google Scholar 

  10. Oka, A., Lampe, L.H.J.: Compressed sensing reception of bursty uwb impulse radio is robust to narrow-band interference. In: IEEE GLOBECOM, pp. 1–7 (2009)

    Google Scholar 

  11. Oka, A., Lampe, L.: A compressed sensing receiver for uwb impulse radio in bursty applications like wireless sensor networks. Phys. Commun. 2(4), 248–264 (2009)

    Article  Google Scholar 

  12. Paredes, J.L., Arce, G.R., Wang, Z.: Ultra-wideband compressed sensing: channel estimation. IEEE J. Signal Process. 1(3), 383–395 (2007)

    Google Scholar 

  13. Souilmi, Y., Knopp, R.: On the achievable rates of ultra-wideband ppm with non-coherent detection in multipath environments. IEEE Int. Conf. Commun. 5, 3530–3534 (2003)

    Article  Google Scholar 

  14. Unser, M.: Sampling–50 years after shannon. Proc. IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  15. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  16. Wang, Z., Arce, G.R., Paredes, J.L., Sadler, B.M.: Compressed detection for ultra-wideband impulse radio. In: IEEE Signal Processing Advances in Wireless Communications (SPAWC) 2007, pp. 1–5 June 2007

    Google Scholar 

  17. Wang, Z., Arce, G., Sadler, B., Paredes, J., Hoyos, S., Yu, Z.: Compressed uwb signal detection with narrowband interference mitigation. In: IEEE International Conference on Ultra-Wideband, 2008. ICUWB 2008, vol. 2, pp. 157–160. IEEE (2008)

    Google Scholar 

  18. Wang, Z., Arce, G.R., Sadler, B.M., Paredes, J.L., Ma, X.: Compressed detection for pilot assisted ultra-wideband impulse radio. In: IEEE International Conference on Ultra-Wideband, 2007. ICUWB 2007, pp. 393–398. IEEE (2007)

    Google Scholar 

  19. Wang, W., Wang, S., Yang, J., Liu, H.: Under-sampling of ppm-uwb communication signals based on cs and aic. Springer publication on Circuits Systems and Signal Processing (March 2015)

    Google Scholar 

  20. Win, M.Z., Scholtz, R.A.: Impulse radio: how it works. IEEE Commun. Lett. 2(2), 36–38 (1998)

    Article  Google Scholar 

  21. Zhang, P., Hu, Z., Qiu, R.C., Sadler, B.M.: A compressed sensing based ultra-wideband communication system. In: Proceedings of the IEEE International Conference on Communications, pp. 4239–4243. IEEE Press, Piscataway, NJ, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka G. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Patil, P.G., Birajdar, G.K. (2016). Compressed Sensing-Based NBI Mitigation in Ultra-WideBand Energy Detector. In: Das, S., Pal, T., Kar, S., Satapathy, S., Mandal, J. (eds) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. Advances in Intelligent Systems and Computing, vol 404. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2695-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2695-6_11

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2693-2

  • Online ISBN: 978-81-322-2695-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics