Advertisement

Somatic Embryogenesis and Genetic Transformation of Carnation (Dianthus caryophyllus L.)

  • Anelia IantchevaEmail author
Chapter
  • 711 Downloads

Abstract

The chapter summarizes the progress of somatic embryogenesis and genetic transformation of carnation obtained during the last 40 years. Factors that determine the processes of indirect and direct somatic embryogenesis of this ornamental plant are described and discussed. The present chapter outlines the current results in the field and focuses on the primary guidelines of genetic transformation of carnation. Future applications and intentions identified by Bulgarian research group in this direction have also been highlighted.

Keywords

Carnation in vitro regeneration Somatic embryogenesis Genetic transformation 

References

  1. Ammirato PV (1985) Patterns of development in culture. In: Henke RR, Hughes KW, Constantin MP, Hollander A (eds) Tissue culture and forestry and agriculture. Plenum, New York, pp 9–29CrossRefGoogle Scholar
  2. Arici SE, Koc NK (2009) Regeneration and Agrobacterium mediated transformation studies in carnation (Dianthus caryophyllus L. cv. Turbo). Afr J Biotechnol 8:6094–6100Google Scholar
  3. Boycheva I, Vassileva V, Iantcheva A (2014) Histone acetyltransferases in plant development and plasticity. Curr Genomics 15:28–37PubMedPubMedCentralCrossRefGoogle Scholar
  4. Carman JG (1990) Embryogenic cell in plant tissue cultures: occurrence and behaviour. In Vitro Cell Dev Biol Plant 26:746–753CrossRefGoogle Scholar
  5. Davis MJ, Baker R, Hanan JJ (1977) Clonal multiplication of carnation by micropropagation. J Am Soc Hortic Sci 102:48–53Google Scholar
  6. De Jong AJ, Schmidt EDL, De Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22:367–377PubMedCrossRefGoogle Scholar
  7. Demmink JF, Custers JBM, Bergervoet JHW (1987) Gynogenesis to bypass crossing barriers between diploid and tetraploid Dianthus species. Acta Horticult 216:343–344CrossRefGoogle Scholar
  8. Earle ED, Langhans RW (1975) Carnation propagation from shoot tips cultured in liquid medium. HortSci 10:608–610Google Scholar
  9. Frey L, Janick J (1991) Organogenesis in carnation. J Am Soc Hortic Sci 116:1108–1112Google Scholar
  10. Frey L, Saranga Y, Janick J (1992) Somatic embryogenesis in carnation. HortSci 27:63–65Google Scholar
  11. Gimelli F, Ginatta G, Venturo R, Positan S, Bulatti M (1984) Plantlet regeneration from petals and floral induction in vitro in the Mediterranean carnation (Dianthus caryophyllus L.). Riv Ortoflorofruttic Ital 68:107–121Google Scholar
  12. Holley DW, Baker R (1991) Carnation production II. Kendall Hunt Publishing Company, Dubuque, 156 ppGoogle Scholar
  13. Hollings M, Stone OM (1972) Productivity of virus tested carnation clones and the rate of reinfection with virus. J Hortic Sci 47:141–149Google Scholar
  14. Hughes S (1993) Carnations and pinks. The complete guide. The Crowood Press, Ramsbury, 221 ppGoogle Scholar
  15. Iantcheva A, Vlahova M, Atanassova B, Atanassov A (2005) Plant regeneration via direct organogenesis and somatic embryogenesis of two new Bulgarian spray carnation cultivars. Biotechnol Biotechnol Equip 19:15–19CrossRefGoogle Scholar
  16. Iantcheva A, Revalska M, Zehirov G, Vassileva V (2014) Agrobacterium mediated transformation of Medicago truncatula cell suspension culture provides a system for functional analysis. In Vitro Cell Dev Biol Plant 50:149–157CrossRefGoogle Scholar
  17. Kakehi M (1979) Studies on the tissue culture of carnation. V. Induction of redifferentiated plants from the petal tissue. Bull Hiroshima Agric Coll 6:159–166Google Scholar
  18. Kanwar JK, Kumar S (2009) Influence of growth regulators and explants on shoot regeneration in carnation. Hortic Sci 36(4):140–146Google Scholar
  19. Kanwar JK, Kumar S (2011) Recovery of transgenic plants by Agrobacterium-mediated genetic transformation in Dianthus caryophyllus L. (carnation). Adv Appl Sci Res 2:357–366Google Scholar
  20. Karami O, Kordestani GK (2007) Proliferation, shoot organogenesis and somatic embryogenesis in embryogenic callus of carnation. J Fruit Ornam Plant Res 15:167–175Google Scholar
  21. Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344CrossRefGoogle Scholar
  22. Karami O, Deljou A, Mahmodi Pour A (2007) Repetitive somatic embryogenesis in carnation on picloram supplemented media. Plant Growth Regul 50:33–39CrossRefGoogle Scholar
  23. Karami O, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tissue Org Cult 92:273–280CrossRefGoogle Scholar
  24. Karami O (2010) Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis 37:2493–2507Google Scholar
  25. Kiss E, Veres A, Zs G, Nagy N, Tуth E, Varga A, Hrazdina G, Heszky L (2000) Production of transgenic carnation with antisense ACS (1-aminocyclopropane-1-carboxylate synthase) gene. Int J Hortic Sci 6:104–107Google Scholar
  26. Kozak D, Hampel M (1979) Studies of in vitro multiplication of carnations III. The optimization of multiplantlet formation. Acta Horticult 91:333–337CrossRefGoogle Scholar
  27. Lu CY, Nugent G, Wardley-Richardson T, Chandler SF, Young R, Dalling MJ (1991) Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Biotechnology 9:864–868CrossRefGoogle Scholar
  28. Maheswaran G, Williams EG (1984) Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa, and rapid clonal propagation of T. repens. Ann Bot 54:201–211Google Scholar
  29. Miroshnichenko DN, Dolgov SV (2000) Production of transgenic hygromicin resistant carnation (Dianthus caryophyllus L.) plants after cocultivation with Agrobacterium tumefaciens. In: Cadic A(ed) Prot 19 Int’l symposium improvement ornamental plants. Acta Hort 508, ISHSGoogle Scholar
  30. Nakano M, Mii M (1993) Antibiotics stimulate somatic embryogenesis without plant growth regulators in several Dianthus cultivars. J Plant Physiol 141:721–725CrossRefGoogle Scholar
  31. Nontaswatsri C, Fukai S (2006) Carnation (Dianthus caryophyllus L.). In: Wang K (ed) Agrobacterium protocols, vol 2. Humana Press, Totowa, pp 311–320CrossRefGoogle Scholar
  32. Nontaswatsri C, Fukai S, Goi M (2004) Revised cocultivation conditions produce effective Agrobacterium mediated genetic transformation of carnation (Dianthus caryophyllus L.). Plant Sci 166:59–68CrossRefGoogle Scholar
  33. Nugent G, Wardley RT, Lu CY (1991) Plant regeneration from stem and petal of carnation (Dianthus caryophyllus L.). Plant Cell Rep 10:477–480PubMedCrossRefGoogle Scholar
  34. Pareek A, Kothari SL (2003) Direct somatic embryogenesis and plant regeneration from leaf cultures of ornamental species of Dianthus. Sci Hortic 98:449–459CrossRefGoogle Scholar
  35. Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A (2011) Recent progress in development of Tnt1 functional genomics platform for Medicago truncatula and Lotus japonicus in Bulgaria. Curr Genomics 12:147–152PubMedPubMedCentralCrossRefGoogle Scholar
  36. Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation senescence. Hortic Sci 30:970–972Google Scholar
  37. Szoke A, Kiss E, Toldi O, Heszky L (2006) Production of transgenic carnation with a heterologous 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase bifunctional enzyme cDNA. Int J Hortic Sci 12(4):75–79Google Scholar
  38. Tanaka Y, Kastumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24CrossRefGoogle Scholar
  39. Tanase K, Nishitani C, Hirakawa H, Isobe S, Tabata S, Ohmiya A, Onozaki T (2012) Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13:292PubMedPubMedCentralCrossRefGoogle Scholar
  40. Van Altvorst AC, Koehorst H, Bruinsma T, Dons HJM (1994) Improvement of adventitious shoot formation from carnation leaf explants. Plant Cell Tiss Org Cult 37:87–90CrossRefGoogle Scholar
  41. Van Altvorst AC, Rikesen T, Koehorst H, Dons JJM (1995) Transgenic carnations obtained by Agrobacterium tumefaciens mediated of leaf explants. Transgenic Res 4:105–113CrossRefGoogle Scholar
  42. Van Altvorst AC, Koehorst HJJ, Dons JJM (1996) Transgenic carnation plants obtained by Agrobacterium tumefaciens mediated transformation of petal explants. Plant Cell Tissue Org Cult 169:169–173CrossRefGoogle Scholar
  43. Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G (2008) Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defence-associated but required for susceptibility to downy mildew. Plant J 54:785–793PubMedCrossRefGoogle Scholar
  44. Veres A, Kiss E, Tуth E, Tуth A, Heszky L (2005) Downregulation of ethylene production in carnation (Dianthus caryophyllus L.) by an apple derived ACC-cDNA. Int J Hortic Sci 11:101–104Google Scholar
  45. Villalobos V (1981) Floral differentiation in carnation (Dianthus caryophyllus L.) from anthers cultured in vitro. Phyton 41:71–75Google Scholar
  46. Williams E, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462Google Scholar
  47. Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Jpn Soc Hortic Sci 75:166–172CrossRefGoogle Scholar
  48. Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509CrossRefGoogle Scholar
  49. Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734PubMedPubMedCentralCrossRefGoogle Scholar
  50. Yantcheva A, Vlahova M, Atanassova B, Atanassov A (1997a) Direct organogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). Biotechnol Biotechnol Equip 11:60–65CrossRefGoogle Scholar
  51. Yantcheva A, Vlahova M, Todorovska E, Atanassov A (1997b) Genetic transformation of carnation (Dianthus caryophyllus L.). Biotechnol Biotechnol Equip 11:21–25CrossRefGoogle Scholar
  52. Yantcheva A, Vlahova M, Antanassov A (1998) Direct somatic embryogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). Plant Cell Rep 18:148–153CrossRefGoogle Scholar
  53. Zuker A, Chang P-FL, Ahroni A, Cheah K, Woodson WR, Bressan RA, Watad AA, Hasegawa PM, Vainstein A (1995) Transformation of carnation by microprojectile bombardment. Sci Hortic 64:177–185CrossRefGoogle Scholar
  54. Zuker A, Tzfira T, Vainstein A (1998) Genetic engineering for cut flower improvement. Biotechol Adv 16:33–79CrossRefGoogle Scholar
  55. Zuker A, Ahroni A, Tzfira T, Ben-Meir H, Vainstein A (1999) Wounding by bombardment yields highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Mol Breed 5:367–375CrossRefGoogle Scholar
  56. Zuker A, Shklarman E, Scovel G, Ben-Meir H, Ovadis M, Neta-Sharir I, Ben-Yephet Y, Weiss D, Watad A, Vainstein A (2001) Genetic engineering of agronomic and ornamental traits in carnation. Acta Horticult 560:91–94CrossRefGoogle Scholar
  57. Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki I, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.AgrobioinstituteSofiaBulgaria

Personalised recommendations