Advertisement

Somatic Embryogenesis in Japanese Black Pine (Pinus thunbergii Parl.)

  • Tsuyoshi E. MaruyamaEmail author
  • Yoshihisa Hosoi
Chapter

Abstract

Somatic embryogenesis in Japanese black pine (Pinus thunbergii Parl.) was initiated from megagametophytes containing immature zygotic embryos. Embryogenic cultures were maintained and proliferated in a medium supplemented with 3 μM 2,4-dichlorophenoxyacetic acid, 1 μM 6-benzylaminopurine, 30 g l−1 sucrose, and 1.5 g l−1 l-glutamine. The somatic embryo maturation experiments were performed in darkness at 25 °C. Embryogenic tissues were cultured on maturation media containing 50 g l−1 maltose, 2 g l−1 activated charcoal, 100 μM abscisic acid, and 100 g l−1 polyethylene glycol. Desiccation of somatic embryos at high relative humidity resulted not only in a marked increment in germination frequency but also subsequently improved plant conversion rate. In addition, this treatment resulted in a considerable improvement of synchronization of the germination period, compared to those of untreated control. Somatic plants were acclimatized and their growth has been monitored in the field.

Keywords

Conifers Embryogenic cultures Plant regeneration Post-maturation treatments Somatic embryos Somatic plants 

Notes

Acknowledgments

We express our gratitude to the Ibaraki Prefectural Government Forestry Technology Center for the generous supply of seeds.

References

  1. Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2011) Patterning during somatic embryogenesis in relation to polar auxin transport and programmed cell death. Plant Cell Tissue Org Cult doi: 10.1007/s11240-011-0103-8 Google Scholar
  2. Beardmore T, Charest PJ (1995) Black spruce somatic embryo germination and desiccation tolerance. I. Effects of abscisic acid, cold, and heat treatments on the germinability of mature black spruce somatic embryos. Can J For Res 25:1763–1772CrossRefGoogle Scholar
  3. Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817CrossRefGoogle Scholar
  4. Bomal C, Tremblay M (1999) Effect of desiccation to low moisture content on germination, synchronization of root emergence, and plant regeneration of black spruce embryos. Plant Cell Tissue Org Cult 56:193–200CrossRefGoogle Scholar
  5. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Org Cult 100:241–254CrossRefGoogle Scholar
  6. Charest PJ, Devantier Y, Lachance D (1996) Stable genetic transformation of Picea mariana (black spruce) via particle bombardment. In Vitro Cell Dev Biol Plant 32:91–99CrossRefGoogle Scholar
  7. Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84–89CrossRefGoogle Scholar
  8. Garin E, Isabel N, Plourde A (1998) Screening of large numbers of seed families of Pinus strobus L. for somatic embryogenesis from immature and mature zygotic embryos. Plant Cell Rep 18:37–43CrossRefGoogle Scholar
  9. Hay EI, Charest PJ (1999) Somatic embryo germination and desiccation tolerance in conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic, Dordrecht, pp 61–96CrossRefGoogle Scholar
  10. Hosoi Y, Ishii K (2001) Somatic embryogenesis and plantlet regeneration in Pinus armandii var. amamiana. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science, Amsterdam, pp 313–318Google Scholar
  11. Hosoi Y, Maruyama TE (2012) Plant regeneration from embryogenic tissue of Pinus luchuensis Mayr, an endemic species in Ryukyu Island, Japan. Plant Biotechnol 29:401–406CrossRefGoogle Scholar
  12. Igasaki T, Sato T, Akashi N, Mohri T, Maruyama E, Kinoshita I, Walter C, Shinohara K (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep 22:239–243PubMedCrossRefGoogle Scholar
  13. Ishii K, Maruyama E (1999) Regeneration from somatic embryos of three Japanese conifers. Biologia 16:54–57Google Scholar
  14. Ishii K, Maruyama E, Hosoi Y (2001) Somatic embryogenesis of Japanese conifers. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science, Amsterdam, pp 297–304Google Scholar
  15. Jain SM, Gupta PK, Newton RJ (eds) (1995) Somatic embryogenesis in woody plants Vol. 3, Gymnosperms. Kluwer Academic, DordrechtGoogle Scholar
  16. Jones NB, van Staden J (1999) Somatic embryogenesis in Pinus patula Scheide et Deppe. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic, Dordrecht, pp 431–447CrossRefGoogle Scholar
  17. Jones NB, van Staden J (2001) Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cell Dev Biol Plant 37:543–549CrossRefGoogle Scholar
  18. Kanetani S, Akiba M, Nakamura K, Gyokusen K, Saito A (2001) The process of decline of an endangered tree species, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, on the southern slope of Mt. Hasa-dake in Yaku-shima Island. J For Res 6:307–310CrossRefGoogle Scholar
  19. Kermode AR, Bewley D (1985) The role of maturation drying in the transition from seed development to germination. I. Acquisition of desiccation-tolerance and germinability during development of Ricinus communis L. seeds. J Exp Bot 12:1906–1915CrossRefGoogle Scholar
  20. Kharenko OA, Zaharia LI, Giblin M, Cekic V, Taylor DC, Palmer CD, Abrams SR, Loewen MC (2011) Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri. Plant Cell Tissue Org Cult 105:415–422CrossRefGoogle Scholar
  21. Kim YW, Moon HK (2007) Regeneration of plant by somatic embryogenesis in Pinus rigida × P. taeda. In Vitro Cell Dev Bio Plant 43:335–342CrossRefGoogle Scholar
  22. Kishi Y (1995) The pine wood nematode and the Japanese pine sawyer. Thomas, TokyoGoogle Scholar
  23. Kiyohara T, Tokushige Y (1971) Inoculation experiments on a nematode, Bursaphelenchus sp., onto pine trees. J Jpn For Soc 53:210–218 (in Japanese with English summary)Google Scholar
  24. Klimaszewska K, Cyr DR (2002) Conifer somatic embryogenesis: I. Dev Dendrobiol 48:31–39Google Scholar
  25. Klimaszewska K, Devantier Y, Lachance D, Lelu M-A, Charest PJ (1997) Larix laricina (tamarack): somatic embryogenesis and genetic transformation. Can J For Res 27:538–550Google Scholar
  26. Klimaszewska K, Park JS, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392–399CrossRefGoogle Scholar
  27. Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25Google Scholar
  28. Kong L, Yeung E (1992) Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell Dev Biol 28P:125–131CrossRefGoogle Scholar
  29. Lelu M-A, Bastien C, Drugeault A, Gouez M-L, Klimaszewska K (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol Plant 105:719–728CrossRefGoogle Scholar
  30. Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tissue Org Cult 107:25–33CrossRefGoogle Scholar
  31. Mamiya Y (1983) Pathology of the pine wilt disease by Bursaphelenchus xylophilus. Annu Rev Phytopathol 21:201–220PubMedCrossRefGoogle Scholar
  32. Mamiya Y, Enda N (1972) Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternus (Coleoptera: Cerambycidae). Nematologica 18:159–162CrossRefGoogle Scholar
  33. Maruyama TE, Hosoi Y (2012) Post-maturation treatment improves and synchronizes somatic embryo germination of tree species of Japanese pines. Plant Cell Tissue Org Cult 110:45–52CrossRefGoogle Scholar
  34. Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotechnol 17:281–296CrossRefGoogle Scholar
  35. Maruyama E, Hosoi Y, Ishii K (2002) Somatic embryogenesis in Sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J For Res 7:23–34CrossRefGoogle Scholar
  36. Maruyama E, Hosoi Y, Ishii K (2005a) Somatic embryo production and plant regeneration of Japanese black pine (Pinus thunbergii). J For Res 10:403–407CrossRefGoogle Scholar
  37. Maruyama E, Hosoi Y, Ishii K (2005b) Propagation of Japanese red pine (Pinus densiflora Zieb. et Zucc.). Prop Ornam Plants 4:199–204Google Scholar
  38. Maruyama E, Ishii K, Hosoi Y (2005c) Efficient plant regeneration of Hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) via somatic embryogenesis. J For Res 10:73–77CrossRefGoogle Scholar
  39. Maruyama E, Hosoi Y, Ishii K (2007) Somatic embryogenesis and plant regeration in yakutanegoyou, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. In Vitro Cell Dev Biol Plant 43:28–34CrossRefGoogle Scholar
  40. Miguel C, Gonçalves S, Tereso S, Marum L, Maroco J, Olivera MM (2004) Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Plant Cell Tissue Org Cult 76:121–130CrossRefGoogle Scholar
  41. Nagao A (1983) Differences of flower initiation of Cryptomeria japonica under various alternating temperatures. J Jpn For Soc 65:335–338 (in Japanese)Google Scholar
  42. Park YS, Bonga JM, Cameron SI, Barrett JD, Forbes K, DeVerno LL, Klimaszewska K (1999) Somatic embryogenesis in jack pine (Pinus banksiana Lamb). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic, Dordrecht, pp 491–504CrossRefGoogle Scholar
  43. Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tissue Org Cult 86:87–101CrossRefGoogle Scholar
  44. Pullman GS, Namjoshi K, Zhang Y (2003) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95PubMedCrossRefGoogle Scholar
  45. Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68:1086–1090CrossRefGoogle Scholar
  46. Sato H, Sakuyama T, Kobayashi M (1987) Transmission of Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle (Nematoda, Aphelenchoididae) by Monochamus saltuarius (Gebler) (Coleoptera, Cerambycidae). J Jpn For Soc 69:492–496 (in Japanese with English summary)Google Scholar
  47. Shin D-I, Podila GK, Huang YH, Karnosky DF (1994) Transgenic larch expressing genes for herbicide and insect resistance. Can J For Res 24:2059–2067CrossRefGoogle Scholar
  48. Smith DR (1996) Growth medium. United States patent # 5,565,355Google Scholar
  49. Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TE (2001) Purine and pyrimidine metabolism during the partial drying treatment of white spruce (Picea glauca) somatic embryos. Physiol Plant 111:93–101CrossRefGoogle Scholar
  50. Taniguchi T (2001) Plant regeneration from somatic embryos in Pinus thunbergii (Japanese black pine) and Pinus densiflora (Japanese red pine). In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science, Amsterdam, pp 318–324Google Scholar
  51. Walter C, Grace LJ, Wagner A, White DWR, Walden AR, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–468CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyForestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations