Effects of Plant Growth Regulator, Auxin Polar Transport Inhibitors on Somatic Embryogenesis and CmSERK Gene Expression in Cattleya maxima (Lindl.)

  • Augusta Yadira Cueva-AgilaEmail author
  • Jhelisa Medina
  • Lorenzo Concia
  • Rino Cella


The somatic embryogenesis is commonly used for rapid propagation of species of interest hard to reproduce, like orchids. The induction of somatic embryogenesis requires the establishment of a peculiar genetic expression pattern in the presence of the suitable environmental conditions and a favorable hormonal background, which can be obtained providing synthetic plant growth regulators.

We tested several combinations of plant growth regulators in different illumination conditions on leaf explants of Cattleya maxima. The most efficient production of embryos was achieved with exogenous cytokinin (thidiazuron) in dark conditions at the cut end of the leaf. The expression of CmSERK gene was higher in the presence of cytokinins. The effects of the different treatments are discussed.


Somatic embryogenesis 2,3,5-Triiodobenzoic acid (TIBA) and naftilpropionic acid (NPA) Darkness Somatic embryogenesis receptor-like kinase (SERK) 



N-1-Naphthylphthalamic acid


2,3,5-Triiodobenzoic acid


Plant growth regulators


Polar auxin transport


Somatic embryogenesis


Thidiazuron [1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea]


2,4-Dichlorophenoxyacetic acid




Naphthaleneacetic acid



We thank Dr. Quintana-Ascencio (University of Central Florida) for advice on graphics and data presentation and Carlos Iñiguez-Armijos (Universidad Técnica Particular de Loja) for helpful training on the graphics editor Inkscape.


  1. Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tiss Org Cult 109:391–400CrossRefGoogle Scholar
  2. Arditti J (2008) Micropropagation of Orchids, 2nd edn. Blackwell Publishing, MaldenGoogle Scholar
  3. Chen JT, Chang WC (2001) Effects of auxins and cytokinins on direct somatic embryogenesis from leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul 34:229–232CrossRefGoogle Scholar
  4. Chen JT, Chang WC (2004) TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant Cell Tiss Org Cult 79:315–320CrossRefGoogle Scholar
  5. Chen J, Chang W (2006) Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol Plant 50:107–110CrossRefGoogle Scholar
  6. Chen J-T, Hong P-I (2012) Cellular origin and development of secondary somatic embryos in Oncidium leaf cultures. Biol Plant 56(2):215–220CrossRefGoogle Scholar
  7. Chen JT, Chang C, Chang WC (1999) Direct somatic embryogenesis on leaf explants of Oncidium Gower Ramsey and subsequent plant regeneration. Plant Cell Rep 19:143–149CrossRefGoogle Scholar
  8. Choi YE, Kim HS, Soh WY, Yang DC (1997) Developmental and structural aspects of somatic embryos formed on medium containing 2,3,5-triidobenzoic acid. Plant Cell Rep 16:738–744CrossRefGoogle Scholar
  9. Choi YE, Ko SK, Lee KS, Yoon ES (2002) Production of plantlets of Eleutherococcus sessiliflorus via somatic embryogenesis and successful transfer to soil. Plant Cell Tiss Org Cult 69:35–40CrossRefGoogle Scholar
  10. Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 83:715–730Google Scholar
  11. Chung HH, Chen JT, Chang WC (2005) Cytokinins induce direct somatic embryogenesis of Dendrobium chiengmai Pink and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 41:765–769CrossRefGoogle Scholar
  12. Chung HH, Chen JT, Chang WC (2007) Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biol Plant 51:346–350CrossRefGoogle Scholar
  13. Crawley MJ (2007) The R Book. Wiley, ChichesterCrossRefGoogle Scholar
  14. Cueva A, González Y (2009) In vitro germination and somatic embryogenesis induction in Cyrtochilum loxense, an endemic, vulnerable orchid from Ecuador. In: Pridgeon AM, Suarez JP (eds) Proceedings of the second scientific conference on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador, pp 56–62Google Scholar
  15. Cueva A, Concia L, Cella R (2012) Molecular characterization of a Cyrtochilum loxense Somatic Embryogenesis receptor-like Kinase (SERK) gene expressed during somatic embryogenesis. Plant Cell Rep 31:1129–1139PubMedCrossRefGoogle Scholar
  16. Cueva A, Guachizaca I, Cella R (2013) Combination of 2,4-D and stress improves indirect Somatic Embryogenesis in Cattleya maxima Lindl. Plant Biosyst 149:235–241CrossRefGoogle Scholar
  17. Cueva A, Guachizaca I, Cella R (2015) Combination of 2,4-D and stress improves indirect Somatic Embryogenesis in Cattleya maxima Lindl. Plant Biosyst 149:235–241CrossRefGoogle Scholar
  18. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TWJ, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci 105:4489–4494PubMedPubMedCentralCrossRefGoogle Scholar
  19. Espinosa E, Laguna A, Murguía J, Iglesias L, García B, Escobedo L, Martínez Y, Barredo SB (2010) Un protocolo de embriogénesis somática para la regeneración y Caracterización in vitro de Laelia anceps spp dawsonii. Rev Fitotec Mex 33:323–332Google Scholar
  20. Fang-Yi J, Do Y, Liauh Y, Chung J, Huang P (2006) Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium Gower Ramsey by adjusting carbohydrate sources. Plant Sci 170:1133–1140CrossRefGoogle Scholar
  21. Gaj M (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47CrossRefGoogle Scholar
  22. Gow W, Chen J, Chan W (2009) Effects of genotype, light regime, explants position and orientation on direct somatic embryogenesis from leaf explants of Phalaenopsis orchids. Acta Physiol Plant 31:363–369CrossRefGoogle Scholar
  23. Hakman I, Hallberg H, Palovaara J (2009) The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496PubMedCrossRefGoogle Scholar
  24. Hong PI, Chan JT, Chang WC (2008) Promotion of direct somatic embryogenesis of Oncidium by adjusting carbon sources. Biol Plant 52:597–600CrossRefGoogle Scholar
  25. Hou C, Yang C (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetation to reproductive transition. Plant Cell Physiol 50:1544–1557PubMedCrossRefGoogle Scholar
  26. Huan LVT, Takamura T, Tanaka M (2004) Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 166:1443–1449CrossRefGoogle Scholar
  27. Huang X, Lu XY, Zhao JT, Chen JK, Dai XM, Xiao W, Chen YP, Chen YF, Huang XL (2010) MaSERK1 gene expression associated with somatic embryogenic competence and disease resistance response in banana (Musa spp.). Plant Mol Biol Rep 28:309–316CrossRefGoogle Scholar
  28. Hutchinson MJ, Murch SJ, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium x hortorum Bailey). J Plant Physiol 149:573–579CrossRefGoogle Scholar
  29. Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161CrossRefGoogle Scholar
  30. Ishii Y, Takamura T, Goi M, Tanaka M (1998) Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep 17:446–450CrossRefGoogle Scholar
  31. Krapiec PV, Milaneze M, Pires M (2003) Effects of different combinations of growth regulators for bud induction from seedlings of Cattleya walkeriana Gardner (Orchidaceae). Acta Scientiarum: Biol Sci 25:179–182Google Scholar
  32. Kuo HL, Chen JT, Chang WC (2005) Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cell Dev Biol Plant 41:453–456CrossRefGoogle Scholar
  33. Liao YK, Liao CK, Ho YL (2008) Maturation of somatic embryos in two embryogenic cultures of Picea morrisonicola Hayata as affected by alteration of endogenous IAA content. Plant Cell Tiss Org Cult 93:257–268CrossRefGoogle Scholar
  34. Ma J, He Y, Wu C, Liu H, Hu Z, Sun G (2011) Cloning and molecular characterization of a SERK gene transcriptionally induced during somatic embryogenesis in Ananas comosus cv. Shenwan. Plant Mol Biol Rep 6:1–9Google Scholar
  35. Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542PubMedCrossRefGoogle Scholar
  36. Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097PubMedPubMedCentralCrossRefGoogle Scholar
  37. Nissen P, Minocha SC (1993) Inhibition by 2,4-D of somatic embryogenesis in carrot as explored by its reversal difluoromethylornithine. Physiol Plant 89:673–680CrossRefGoogle Scholar
  38. Nolan K, Irwanto R, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230PubMedPubMedCentralCrossRefGoogle Scholar
  39. Nolan K, Kurdyukov S, Rose R (2011) Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence. Plant Biol 11:44–60Google Scholar
  40. Novak SD, Luna LJ, Gamage RN (2014) Role of auxin in orchid development. Plant Signal Behav 9(10), e972277. doi: 10.4161/psb.32169 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Pérez-Nuñez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar J, Oropeza C (2008) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19PubMedCrossRefGoogle Scholar
  42. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2003–2007CrossRefGoogle Scholar
  43. R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Reinert J (1958) Untersuchungen über die Morphogenese an Gewebekulturen. Ber Dtsch Bot Ges 71:15–15Google Scholar
  45. Sampaio J, Stancato G, Appezzato B (2010) Direct regeneration of protocorm-like bodies (PLBs) from leaf apices of Oncidium flexuosum Sims (Orchidaceae). Plant Cell Tiss Org Cult 103:411–416CrossRefGoogle Scholar
  46. Sassi M, Wang J, Ruberti I, Vernoux T, Xu J (2013) Plant Signal Behav 8: doi:  10.4161/psb.23355 Google Scholar
  47. Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Diff 21:53–62CrossRefGoogle Scholar
  48. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  49. Steward FC, Mapes MO, Mears K (1958) Growth and organized development of culture cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708CrossRefGoogle Scholar
  50. Su YJ, Chen J, Chang W (2006) Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol Plant 50:107–110CrossRefGoogle Scholar
  51. Sun J, Linlin Q, Chuanyou L (2013) Hormonal control of polar auxin transport. In: Rujin C, Baluska F (eds) Polar Auxin transport. New York Dordrecht London, Springer, 337 ppGoogle Scholar
  52. Tetu T, Sangwan RS, Sangwan BSN (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. J Plant Physiol 137:102–109CrossRefGoogle Scholar
  53. Tokuhara K, Mii M (2001) Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cell Devl Biol Plant 37:457–461CrossRefGoogle Scholar
  54. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016PubMedCrossRefGoogle Scholar
  55. Ying-Hua Su, Yu-Bo Liu, Xian-Sheng Zhang (2011) Auxin–Cytokinin interaction regulates meristem development. Mol Plant 4:616–625PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Augusta Yadira Cueva-Agila
    • 1
    Email author
  • Jhelisa Medina
    • 1
  • Lorenzo Concia
    • 2
  • Rino Cella
    • 2
  1. 1.Departamento de Ciencias NaturalesUniversidad Técnica Particular de LojaLojaEcuador
  2. 2.Dipartimento di Biologia e BiotecnologieUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations