Application of Cryogenic Technologies and Somatic Embryogenesis in the Storage and Protection of Valuable Genetic Resources of Ornamental Plants

  • Dariusz KulusEmail author


Cryopreservation is the most safe long-term conservation method of non-orthodox seed species. Somatic embryogenesis, on the other hand, is considered to be the most efficient (micro)propagation technique. By combining in vitro tissue culture techniques with cryoconservation, it is possible to develop highly diverse gene banks on a small surface at reduced costs from cutting down on labor and laboratory consumables. The application of embryonic tissue for storage in liquid nitrogen is very beneficial, especially with endangered species, since it does not require injuring the mother plant. The seeds are very often stored at sub-zero temperatures. Over time also zygotic embryos or their axes of about 100 species and somatic embryos of approximately 40 plant species have been cryopreserved with variable success. The share of ornamental plants, however, is low. The cryopreservation procedures are developed best for somatic embryos. For several species, an attempt to freeze embryogenic callus has been also made. There are even some reports referring to embryogenic potential or metabolic activity growth of proembryogenic masses in some ornamental species observed after freezing. Over time various cryopreservation techniques have been applied. As for seeds, direct immersion in liquid nitrogen or simple air drying is possible. With some species these techniques can be used with embryos. There are also reports on employing slow freezing for embryogenic tissues. Still, the so-called modern methods (e.g., vitrification, droplet vitrification, encapsulation–dehydration) are usually more efficient. The protocols, however, need to be adjusted not only to the individual species but also to single cultivars.


Cryopreservation Embryogenic tissue Liquid nitrogen Ornamental plants Somatic embryogenesis 


  1. Ai PF, Lu LP, Song JJ (2012) Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 108:381–387CrossRefGoogle Scholar
  2. Al-Hajry HA, Al-Maskry SA, Al-Kharousi LM, El-Mardi O, Shayya WH, Goosen MFA (1999) Electrostatic encapsulation and growth of plant cell cultures in alginate. Biotechnol Prog 15:768–774PubMedCrossRefGoogle Scholar
  3. Álvarez R, Revilla MA, Ordás RJ (2007) Transgene stability in cryopreserved cork oak somatic embryos. COST European Cooperation in Science and Technology, Oviedo, pp 46–47Google Scholar
  4. Antony JJJ, Keng C, Rathinam X, Marimuthu S, Subramaniam S (2011a) Effect of preculture and PVS2 incubation conditions followed by histological analysis in the cryopreserved PLBs of Dendrobium Bobby Messina orchid. Aust J Crop Sci 5(12):1557–1564Google Scholar
  5. Antony JJJ, Sinniah UR, Keng CL, Pobathy R, Khoddamzadeh AA, Subramaniam S (2011b) Selected potential encapsulation-dehydration parameters on Dendrobium ‘Bobby Messina’ protocorm-like bodies using TTC analysis. Aust J Crop Sci 5(13):1817–1822Google Scholar
  6. Aronen TS, Krajnakova J, Haggman H, Ryynanen L (1999) Genetic fidelity of cryopreserved embryonic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172CrossRefGoogle Scholar
  7. Ashmore SE, Hamilton KN, Offord CA (2011) Conservation technologies for safeguarding and restoring threatened flora: case studies from Eastern Australia. In Vitro Cell Dev Biol Plant 47:99–109CrossRefGoogle Scholar
  8. Bachiri Y, Gazeau C, Hansz J, Morisset C, Dereuddre J (1995) Successful cryopreservation of suspension cells by encapsulation-dehydration. Plant Cell Tissue Organ Cult 43:241–248Google Scholar
  9. Baghdadi SH, Makhadmeh I, Syouf M, Arabiat A, Shibli RA, Shatnawai MA (2011) Cryopreservation by vitrification of embryogenic callus of wild crocus (Crocus hyemalis and Crocus moabiticus). Acta Hortic 908:239–246CrossRefGoogle Scholar
  10. Bandyopadhyay S, Hamill JD (2000) Ultrastructural studies of somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds. Ann Bot 86:237–244CrossRefGoogle Scholar
  11. Bendahmane M, Dubois A, Raymond O, Le Bris M (2013) Genetics and genomics of flower initiation and development in roses. J Exp Bot 64(4):847–857PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beneke CE, Viljoen AM, Hamman JH (2009) Polymeric plant-derived excipients in drug delivery. Molecules 14:2602–2620PubMedCrossRefGoogle Scholar
  13. Berjak P, Walker M, Watt MP, Mycock DJ (1999) Experimental parameters underlying failure or success in plant germplasm cryopreservation: a case study on zygotic axes of Quercus robur L. CryoLetters 20:251–262Google Scholar
  14. Chen F-D, Li F-T, Chen S-M, Guan Z-Y, Fang W-M (2009) Meiosis and pollen germinability in small-flowered anemone type chrysanthemum cultivars. Plant Syst Evol 280:143–151CrossRefGoogle Scholar
  15. Chmielarz P, Michalak M, Pałucka M, Wasileńczyk U (2011) Successful cryopreservation of Quercus robur plumules. Plant Cell Rep 30:1405–1414PubMedCrossRefGoogle Scholar
  16. Davies R, Nadarajan J, Pritchard HW (2009) Cryopreservation of difficult-to-handle palm seeds. CryoLetters 30(5):386–387Google Scholar
  17. Demirci U, Montesano G (2007) Cell encapsulating droplet vitrification. Lab Chip 7:1428–1433PubMedCrossRefGoogle Scholar
  18. Dixit S, Mandal BB, Ahuja S, Srivastava PS (2003) Genetic stability assessment of plants regenerated from cryopreserved embryogenic tissues of Dioscorea bulbifera L. using RAPD, biochemical and morphological analysis. CryoLetters 24:77–84PubMedGoogle Scholar
  19. Dumet D, Engelmann F, Chabrillange N, Duval Y, Dereuddre J (1993) Importance of sucrose for the acquisition of tolerance to desiccation and cryopreservation of oil palm somatic embryos. CryoLetters 14:243–250Google Scholar
  20. Engelmann F (2011) Cryopreservation of embryos: an overview. Methods Mol Biol 710:155–184PubMedCrossRefGoogle Scholar
  21. Fang J-Y, Wetten A (2011) Importance of structural integrity of somatic embryos for long-term cryopreservation of cocoa (Theobroma cacao L.) germplasm. Afr J Agric Res 6(17):3954–3961Google Scholar
  22. Fang J-Y, Wetten A, Hadley P (2004) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos for long-term germplasm storage. Plant Sci 166:669–675CrossRefGoogle Scholar
  23. Fang JY, Sacande M, Pritchard H, Wetten A (2009) Influence of freezable non-freezable water and sucrose on the viability of Theobroma cacao somatic embryos following desiccation and freezing. Plant Cell Rep 28(6):883–889PubMedCrossRefGoogle Scholar
  24. Fernandez P, Rodriguez E, Pinto G, Roldan-Ruiz I, De Loose M, Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850CrossRefGoogle Scholar
  25. Ferrer-Cervantes ME, Méndez-González ME, Quintana-Ascencio PF, Dorantes A, Dzib G, Durán R (2012) Population dynamics of the cactus Mammillaria gaumeri: an integral projection model approach. Popul Ecol 54(2):321–334CrossRefGoogle Scholar
  26. Forsline PL, Towill LE, Waddell JW, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123(3):365–370Google Scholar
  27. Fukai S (1989) Plant regeneration from shoot tips of Dianthus hybrid cryopreserved in liquid nitrogen up to 2 years. Plant Tissue Cult Lett 6:177–178CrossRefGoogle Scholar
  28. Fukai S (1990) Cryopreservation of chrysanthemum shoot tips. Sci Hortic 45:167–174CrossRefGoogle Scholar
  29. Fuller B (2003) A dip into history: science and publication in cryobiology 150 years ago. CryoLetters 24:133–134PubMedGoogle Scholar
  30. Gamez-Pastrana R, Gonzalez-Arnao MT, Martinez-Ocampo Y, Engelmann F (2011) Thermal events in calcium alginate beads during encapsulation dehydration and encapsulation-vitrification protocols. Acta Hortic 908:47–54CrossRefGoogle Scholar
  31. Garcia-Osuna HT, Benavides Mendoza A, Escobedo Bocardo L, Villarreal Quintanilla JA, Cornejo Oviedo E (2011) Hyperhydricity control of in vitro shoots of Turbinicarpus valdezianus (Moller) GL&F. Phyton 80:175–179Google Scholar
  32. Halmagyi A, Fischer-Kluver G, Mix-Wagner G, Schumacher HM (2004) Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep 22:371–375PubMedCrossRefGoogle Scholar
  33. Hazubska-Przybył T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbia spruce). Plant Cell Tissue Organ Cult 102:35–44CrossRefGoogle Scholar
  34. Heine-Dobbernack E, El Banna A, Kiesecker H, Schumacher HM (2007) Dedifferentiated plant cell lines for the evaluation of physiological parameters of cryotolerance. COST European Cooperation in Science and Technology, Oviedo, pp 20–21Google Scholar
  35. Hitmi A, Sallanon H, Barthomeuf C (1997) Cryopreservation of Chrysanthemum cinerariaefolium Vis. cells and its impact factor on their pyrethrin biosynthesis ability. Plant Cell Rep 17:60–64CrossRefGoogle Scholar
  36. Hoekstra FA, Golovina EA, Tetteroo FA, Wolkers WF (2001) Induction of desiccation tolerance in plant somatic embryos: how exclusive is the protective role of sugars? Cryobiology 43(2):140–150PubMedCrossRefGoogle Scholar
  37. Hor YL, Stanwood PC, Chin HF (1993) Cryopreservation of Coffea liberica seeds and embryos following desiccation and freezing treatments. Pertanika J Trop Agric Sci 16(2):75–80Google Scholar
  38. Hvoslef-Eide AK, Olsen OAS, Lyngved R, Munster C, Heyerdahl PH (2005) Bioreactor design for propagation of somatic embryos. Plant Cell Tissue Organ Cult 81(3):265–276CrossRefGoogle Scholar
  39. Jabłońska L, Perzyńska K (2009) The level of demand for ornamental plants in Warsaw in 2007 and its determinants. Zeszyty Naukowe Instytutu Sadownictwa i Kwiaciarstwa 17:119–132Google Scholar
  40. Janeiro LV, Vieitez AM, Ballester A (1996) Cryopreservation of somatic embryos and embryogenic axes of Camellia japonica L. Plant Cell Rep 15:699–703PubMedCrossRefGoogle Scholar
  41. Jitsopakul N, Thammasiri K, Yukawa C, Ishikawa K (2012) Effect of cryopreservation on seed germination and protocorm development of Vanda tricolor. Sci Asia 38:244–249CrossRefGoogle Scholar
  42. Johnson T, Cruse-Sanders J, Pullman GS (2012) Micropropagation and seed cryopreservation of the critically endangered species Tennessee yellow-eye grass, Xyris tennesseensis Kral. In Vitro Cell Dev Biol Plant 48:369–376Google Scholar
  43. Joung HY, Cantor M, Kamo K (2006) Cryopreservation of Gladiolus cultivars. In: Hummer KE (ed) XXVII international horticultural congress – IHC2006: II international symposium on plant genetic resources of horticultural crops. ISHS Acta Hortic Seoul, pp 225–231Google Scholar
  44. Kakita H, Kamishima H (2009) Some properties of alginate gels derived from algal sodium alginate. Dev Appl Phycol 2:93–99Google Scholar
  45. Kaviani B (2007) Effects of salicylic acid and encapsulation on enhancing the resistance of embryonic axes of persian lilac (Melia azedarach L.) against cryopreservation. Int J Agric Biol 9(4):625–627Google Scholar
  46. Kaviani B (2010) Cryopreservation by encapsulation-dehydration for long-term storage of some important germplasm: seed of lily [Lilium ledebourii (Baker) Bioss.], embryonic axe of persian lilac (Melia azedarach L.), and tea (Camellia sinensis L.). Plant Omics J 3:177–182Google Scholar
  47. Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5(6):778–800Google Scholar
  48. Kaviani B, Safari-Motlagh MR, Padasht-Dehkaei MN, Darabi AH, Rafizadeh A (2008) Cryopreservation of Lily [Lilium ledebourii (Baker) Bioss.] germplasm by encapsulation-dehydration. Int J Bot 4(4):491–493CrossRefGoogle Scholar
  49. Kaviani B, Abadi DH, Torkashvand AM, Hoor SS (2009) Cryopreservation of seeds of lily (Lilium ledebourii /Baker/ Bioss): use of sucrose and dehydration. Afr J Biotechnol 8(16):3809–3810Google Scholar
  50. Kaviani B, Dahkaei M, Hashemabadi D, Darabi A (2010) Cryopreservation of Lilium ledebourii (Baker) Bioss. by encapsulation-vitrification and in vivo media for planting of germplasm. Am Eur J Agric Environ Sci 8(5):556–560Google Scholar
  51. Kaviani B, Darabi Hossein A, Roudposhti VR (2012) In vitro conservation of genetic resources of tea (Camellia sinensis L. cv. 100) using storage of germplasms (embryonic axes and shoot tips) in cryopreservation conditions. Ann Biol Res 3(7):3541–3546Google Scholar
  52. Kim HM, Shin JH, Sohn JK (2004) Cryopreservation of zygotic embryos of herbaceous peony (Paeonia lactiflora Pall.) by encapsulation-dehydration. Korean J Crop Sci 49(4):354–357Google Scholar
  53. Kim HM, Shin JH, Sohn JK (2006) Cryopreservation of somatic embryos of the herbaceous peony (Paeonia lactiflora Pall.) by air drying. Cryobiology 53(1): 69–74Google Scholar
  54. Kong L, Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tissue Organ Cult 106:115–125CrossRefGoogle Scholar
  55. Kulus D (2014) Biotechnological methods of ornamental plants reproduction. In: Mucha-Szajek E (ed) Jakość życia w badaniach młodych naukowców. Maiuscula, Poznań, pp 87–104Google Scholar
  56. Kulus D, Zalewska M (2014a) Cryopreservation as a tool used in long-term storage of ornamental species – a review. Sci Hortic 168:88–107CrossRefGoogle Scholar
  57. Kulus D, Zalewska M (2014b) In vitro plant recovery from alginate encapsulated Chrysanthemum × grandiflorum /Ramat./Kitam. shoot tips. Prop Ornam Plants 14(1):3–12Google Scholar
  58. Kulus D, Mikuła A, Zalewska M (2013) Cryopreservation: an efficient tool to combat genetic erosion phenomenon in agriculture and horticulture. In: Abstracts of IVth international scientific symposium for PhD students and students of agricultural colleges – innovative researches for the future of agriculture and rural areas development, UTP University of Technology and Life Sciences, Bydgoszcz, 19–21 September 2013Google Scholar
  59. Lambardi M, Benelli C, De Carlo A (2005) Cryopreservation as a tool for the long-term conservation of woody plant germplasm: development of the technology at the CNR/IVALSA Institute of Florence. In: Abstracts of the role of biotechnology, Turin, 5–7 March 2005Google Scholar
  60. Lardet L, Martin F, Dessailly F, Carron MP, Montoro P (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Mull. Arg.). Plant Cell Rep 26:559–569PubMedCrossRefGoogle Scholar
  61. Lema-Rumińska J (2011) Flow cytometric analysis of somatic embryos, shoots, and calli of the cactus Copiapoa tenuissima Ritt. forma monstruosa. Plant Cell Tissue Organ Cult 106(3):531–535CrossRefGoogle Scholar
  62. Lema-Rumińska J, Kulus D (2012) Induction of somatic embryogenesis in Astrophytum asterias (Zucc.) Lem. in the aspect of light conditions and auxin 2,4-D concentrations. Acta Sci Polonorum Hortortorum Cultus 11(4):77–87Google Scholar
  63. Lema-Rumińska J, Kulus D (2014) Micropropagation of cacti – a review. Haseltonia 19:46–63CrossRefGoogle Scholar
  64. Lu ZW, Popova EV, Wu CH, Lee EJ, Hahn EJ, Paek KY (2009) Cryopreservation of Ginkgo biloba cell cultures: effect of pretreatment with sucrose and ABA. CryoLetters 30(3):232–243PubMedGoogle Scholar
  65. Luyet BJ, Gehenio PM (1938) The survival of moss vitrified in liquid air and its relation to water content. Biodynamica 2:1–7Google Scholar
  66. Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration, and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol Plant 48:324–334Google Scholar
  67. Marum L, Rocheta M, Oliveira MM, Miguel C (2007) Genetic fidelity of Pinus pinaster somatic embryogenic cultures following cryopreservation. COST European Cooperation in Science and Technology, Oviedo, pp 48–49Google Scholar
  68. Mazur P, Seki S (2011) Survival of mouse oocytes after being cooled in a vitrification solution to −196°C at 95°C to 70,000°C/min and warmed at 610° to 118,000°C/min: a new paradigm for cryopreservation vitrification. Cryobiology 62:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mikula A (2008) Cryopreservation as a method to facilitate preservation of life capacity of plant cells and tissues. Biotechnologia 2(81):41–57Google Scholar
  70. Mikuła A (2006) Comparison of three techniques for cryopreservation and reestablishment of long-term Gentiana tibetica suspension culture. CryoLetters 27(5):269–282PubMedGoogle Scholar
  71. Mikuła A, Rybczyński JJ (2006) Cryopreservation – as a tool for long-term storage of cells, tissues and organs from in vitro culture derived. Biotechnologia 4(75):145–163Google Scholar
  72. Mikuła A, Rybczyński JJ (2007) Fundamental aspects of cell suspension cryopreservation of Gentiana spp. COST European Cooperation in Science Technology, Oviedo, pp 30–31Google Scholar
  73. Mikula A, Tykarska T, Kuraś M (2005) Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments. CryoLetters 26(6):367–378PubMedGoogle Scholar
  74. Mikula A, Olas M, Śliwińska E, Rybczyński JJ (2008) Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains regrowth, embryogenic competence and DNA content. CryoLetters 29(5):409–418PubMedGoogle Scholar
  75. Mikuła A, Fiuk A, Rybczyński JJ (2005) Induction, maintenance and preservation of embryogenic competence of Gentiana cruciata L. cultures. Acta Biol Crac Bot 47:227–236Google Scholar
  76. Mikuła A, Tomiczak K, Rybczyński JJ (2011a) Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants. Plant Cell Rep 30(4):565–574PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mikuła A, Tomiczak K, Wójcik A, Rybczyński JJ (2011b) Encapsulation-dehydration method elevates embryogenic abilities of Gentiana kurroo cell suspension and carrying on genetic stability of its regenerants after cryopreservation. Acta Hortic 908:143–152CrossRefGoogle Scholar
  78. Mikuła A, Makowski D, Tomiczak K, Rybczyński JJ (2013) Kultury in vitro i krioprezerwacja w zachowaniu różnorodności roślin – standardy dla banku genów. Polish J Agron 14:3–17Google Scholar
  79. Ming-Hua Y, Sen-Rong H (2010) A simple cryopreservation protocol of Dioscorea bulbifera L. embryogenic calli by encapsulation-vitrification. Plant Cell Tissue Organ Cult 101:349–358CrossRefGoogle Scholar
  80. Mujib A, Ali M, Isah T, Dipti (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – a comparative study. Saudi J Biol Sci 21(5):442–449PubMedPubMedCentralCrossRefGoogle Scholar
  81. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  82. Normah MN, Reed BM, Yu X (1994) Seed storage and cryoexposure behaviour in hazelnut (Corylus avellana L. cv. Barcelona). CryoLetters 15:315–322Google Scholar
  83. Ozudogru EA, Previati A, Lambardi M (2010) In vitro conservation and cryopreservation of ornamental plants. In: Jain SM (ed) Protocols for in vitro propagation of ornamental plants, Methods in molecular biology 589. Humana Press, Hertfordshire, pp 303–305CrossRefGoogle Scholar
  84. Pawłowska B (2008) Employment of encapsulation-dehydration method for liquid nitrogen cryopreservation of ornamental plant explants propagated in vitro. Folia Hortic 20(1):61–71CrossRefGoogle Scholar
  85. Pawłowska B, Bach A (2011) Cryopreservation by encapsulation-dehydration of in vitro grown shoot buds of Rosa ‘New Dawn’. In: Panis B, Lynch P (eds) I international symposium on cryopreservation in horticultural species. Acta Hortic, Leuven, pp 303–308Google Scholar
  86. Pearce RS (2009) Complexity and a regulatory role for sugars in the acclimation to cold and freezing of plants. CryoLetters 30(3):388Google Scholar
  87. Perán R, Berjak P, Pammenter NW, Kioko JI (2006) Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of a recalcitrant species Ekebergia capensis, Sparrm. CryoLetters 27(1):5–16PubMedGoogle Scholar
  88. Popov AS, Popova EV, Nikishina TV, Kolomeytseva GL (2004) The development of juvenile plants of the hybrid orchid Bratonia after seed cryopreservation. CryoLetters 25(3):205–212PubMedGoogle Scholar
  89. Popova E, Kim H-H, Paek K-Y (2010) Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Scientia Hortic 124:522–528CrossRefGoogle Scholar
  90. Quainoo AK (2009) Effect of liquid nitrogen storage time on the survival and regeneration of somatic embryos of cocoa. Afr Crop Sci J 17(1):17–24Google Scholar
  91. Rabba’a MM, Shibli AS, Shatnawi MA (2012) Cryopreservation of Teucrium polium L. shoot-tips by vitrification and encapsulation-dehydration. Plant Cell Tissue Organ Cult 110:371–382CrossRefGoogle Scholar
  92. Rajasekharan PE, Rao TM, Janakiram T, Ganeshan S (1994) Freeze preservation of gladiolus pollen. Euphytica 80:105–109CrossRefGoogle Scholar
  93. Reed BM (2006) Cryopreservation of bermudagrass germplasm by encapsulation dehydration. Crop Sci 46(1):6–11CrossRefGoogle Scholar
  94. Reed BM (2008) Cryopreservation – practical considerations. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Corvallis, pp 3–15Google Scholar
  95. Ríordáin FÓ (1992) The European plant tissue culture industry – 1990. Agronomie 12:743–746CrossRefGoogle Scholar
  96. Roach T, Beckett RP, Minibayeva F, Kranner I (2009) Reactive oxygen species production from the initial stage of cryopreserving Castanea sativa embryonic axes. CryoLetters 30(5):383–384Google Scholar
  97. Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24:531–560PubMedCrossRefGoogle Scholar
  98. Sakai A (1956) Survival of plant tissue at super-low temperature. Low Temp Sci Ser B 14:17–23Google Scholar
  99. Salaj T, Panis B, Swennen R, Salaj J (2007) Cryopreservation of embryogenic tissues of Pinus nigra Arn. by a slow freezing method. CryoLetters 28(2):69–76PubMedGoogle Scholar
  100. Salaj T, Matusikova I, Fraterova L, Pirselova B, Salaj J (2011) Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. Plant Cell Tissue Organ Cult 106:55–61CrossRefGoogle Scholar
  101. Sarasan V, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree K (2006) Conservation in vitro of threatened plants – progress in the past decades. In Vitro Cell Dev Biol Plant 42:206–214Google Scholar
  102. Sekizawa K, Yamamoto S, Rafique T, Fukui K, Niino T (2011) Cryopreservation of in vitro-grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotechnol 28:401–405CrossRefGoogle Scholar
  103. Sengar RS, Chaudhary R, Tyagi SK (2010) Present status and scope of floriculture developed through different biotechnological tools. Res J Agric Sci 1(4):306–314Google Scholar
  104. Seo MJ, Shin JH, Sohn JK (2007) Cryopreservation of dormant herbaceous peony (Paeonia lactiflora Pall.) shoot-tips by desiccation. CryoLetters 28(3):207–213PubMedGoogle Scholar
  105. Sershen N, Pammenter NW, Berjak P, Wesley-Smith J (2007) Cryopreservation of embryonic axes of selected amaryllid species. CryoLetters 28(5):387–399PubMedGoogle Scholar
  106. Sershen N, Berjak P, Pammenter NW, Wesley-Smith J (2011) The effects of various parameters during processing for cryopreservation on the ultrastructure and viability of recalcitrant zygotic embryos of Amaryllis belladonna. Protoplasma 249(1):155–169PubMedCrossRefGoogle Scholar
  107. Sharaf SA, Shibli RA, Kasrawi MA, Baghdadi SH (2012) Cryopreservation of wild Shih (Artemisia herba-alba Asso.) shoot-tips by encapsulation-dehydration and encapsulation-vitrification. Plant Cell Tissue Organ Cult 108(3):437–444CrossRefGoogle Scholar
  108. Sharma SD (2005) Cryopreservation of somatic embryos: an overview. Ind J Biotechnol 4:47–55Google Scholar
  109. Sharma SD, Agrawal V (2012) Tissue culture aspects of ornamental plants. J Biotechnol 1(1):40–48Google Scholar
  110. Shibli RA (2000) Cryopreservation of black iris (Iris nigricans) somatic embryos by encapsulation-dehydration. CryoLetters 21(1):39–46PubMedGoogle Scholar
  111. Shin DJ, Kong H, Popova EV, Moon H-K, Park SY, Park SU (2012) Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification. CryoLetters 33(5):402–410PubMedGoogle Scholar
  112. Singh AK, Chand S (2010) Plant regeneration from alginate-encapsulated somatic embryos of Dalbergia sissoo Roxb. Ind J Biotechnol 9:319–324Google Scholar
  113. Sisunandar RA, Turquay P, Samosir Y, Adkins SW (2010) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232:435–447PubMedCrossRefGoogle Scholar
  114. Srinivas L, Ganapathi TR, Suprasanna P, Bapat LA (2006) Desiccation and ABA treatment improves conversion of somatic embryos to plantlets in banana (Musa spp.) cv. Rasthali (AAB). Ind J Biotechnol 5:521–526Google Scholar
  115. Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Alwee SSRS, Roowi SH (2011) Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Reg 66:101–109CrossRefGoogle Scholar
  116. Suzuki M, Ishikawa M, Okuda H, Noda K, Kishimoto T, Nakamura T, Ogiwara I, Shimura I, Akihama T (2006) Physiological changes in Gentian axillary buds during two-step preculturing with sucrose that conferred high levels of tolerance to desiccation and cryopreservation. Ann Bot 97:1073–1081PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takagi H, Tien Thinh NT, Islam OM, Senboku T, Sakai A (1997) Cryopreservation of in vitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep 16:594–599CrossRefGoogle Scholar
  118. Tarre E, Pires BBM, Guimaraes APM, Carneiro LA, Forzza RC, Mansur E (2007) Germinability after desiccation, storage and cryopreservation of seeds from endemic Encholirium Mart. ex Schult. & Schult. f. and Dyckia Schult. & Schult. f. species (Bromeliaceae). Acta Bot Bras 21(4):777–783CrossRefGoogle Scholar
  119. Teixeira da Silva J, Kulus D (2014) Chrysanthemum biotechnology: discoveries from the recent literature. Folia Hortic 26(2):67–77Google Scholar
  120. Tessereau H, Florin B, Meshine MC, Thierry C, Pétiard V (1994) Cryopreservation of somatic embryos: a tool for germplasm storage and commercial delivery of selected plants. Ann Bot 74:547–555CrossRefGoogle Scholar
  121. Tomiczak K, Rybczyński JJ, Wójciók A, Mikuła A (2009) Morphogenic potential of Gentiana kurroo (Royle) cell suspension after cryotreatment. CryoLetters 30(5):396Google Scholar
  122. Uemura M, Minami A, Kawamura Y (2009) Effect of low temperature and cryoprotectants on plant plasma membrane. In: Panis B, Lynch P (eds) 1st international symposium: cryopreservation in horticultural species. ISHS Acta Hortic, Leuven, p 15Google Scholar
  123. Vágner M, Spacková J, Eliasová K (2007) Cryopreservation of embryogenic cultures of Norway spruce. COST European Cooperation in Science and Technology, Oviedo, pp 34–35Google Scholar
  124. Vázquez AM (2007) Cryopreservation and genetic instability. COST European Cooperation in Science and Technology, Oviedo, pp 42–44Google Scholar
  125. Wen Y, Chunyan L, Xiuling B, Hengchun L, Li W (1999) Study on callus cryopreservation of Freesia refracta Klatt. J Northeast Norm Univ (Nat Sci Ed) 4:70–72Google Scholar
  126. Wilkinson T, Wetten A, Prychid C, Fay MF (2003) Suitability of cryopreservation for the long-term storage of rare and endangered plant species: a case history of Cosmos atrosanguineus. Ann Bot 91:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  127. Winkelmann T, Mubmann V, Serek M (2004) Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Rep 23:1–8PubMedCrossRefGoogle Scholar
  128. Wolkers WF, Tetteroo FA, Alberda M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ fourier transform infrared spectroscopic study. Plant Physiol 120(1):153–164PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wu Y-J, Huang X-L, Chen Q-Z, Li X-J, Engelmann F (2007) Induction and cryopreservation of embryogenic cultures from nucelli and immature cotyledon cuts of mango (Mangifera indica L. var Zihua). Plant Cell Rep 26:161–168PubMedCrossRefGoogle Scholar
  130. Xue SH, Luo XJ, Wu ZH, Zhang HL, Wang X (2007) Cold storage and cryopreservation of hairy root cultures of medicinal plant Eruca sativa Mill., Astragalus membranaceus and Gentiana macrophylla. Plant Cell Tissue Organ Cult 92:251–260CrossRefGoogle Scholar
  131. YaJun L, LiPing G, Tao X, KeJun G (2009) Study on cryopreservation of suspension culture cells by vitrification in Camellia sinensis. J Tea Sci 29(2):120–126Google Scholar
  132. Zalewska M, Kulus D (2013) Cryopreservation of in vitro-grown shoot tips of chrysanthemum by encapsulation-dehydration. Folia Hortic 25(2):133–140CrossRefGoogle Scholar
  133. Zalewska M, Kulus D (2014) Improvement of Chrysanthemum × grandiflorum /Ramat./ Kitam. encapsulation-dehydration cryopreservation protocol. Acta Scientarum Polonorum Hortorum Cultus 13(2):97–108Google Scholar
  134. Zalewska M, Lema-Rumińska J, Miler N (2007) In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Scientia Hortic 113:70–73CrossRefGoogle Scholar
  135. Zalewska M, Lema-Rumińska J, Miler N, Gruszka M, Dąbal W (2011) Induction of adventitious shoot regeneration in chrysanthemum as affected by the season. In Vitro Cell Dev Biol Plant 47:375–378Google Scholar
  136. Zeliang PK, Pattanayak A, Iangrai B, Khongwir EA, Sarma BK (2010) Fertile plant regeneration from cryopreserved calli of Oryza rufipogon Griff. and assessment of variation in the progeny of regenerated plants. Plant Cell Rep 29:1423–1433PubMedCrossRefGoogle Scholar
  137. Zhao MA, Xhu YZ, Dhital SP, Khu DM, Song YS, Wang MY, Lim HT (2005) An efficient cryopreservation procedure for potato (Solanum tuberosum L.) utilizing the new ice blocking agent, Supercool X1000. Plant Cell Rep 24:477–481PubMedCrossRefGoogle Scholar
  138. Zhao EH, Liu ZH, Hu X, Yin JL, Li W, Rao GY, Zhang XH, Huang CL, Anderson N, Zhang QX, Chen JY (2009) Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genet Resour Crop Evol 56:937–946CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Ornamental Plants and Vegetable Crops – Laboratory of BiotechnologyUTP University of Technology and Life Sciences in BydgoszczBydgoszczPoland

Personalised recommendations