Advertisement

CRP and Diabetes: Sugar Is Not So Sweet

  • Waliza Ansar
  • Shyamasree Ghosh
Chapter

Abstract

The complications and burden of the metabolic syndrome of diabetes is increasing worldwide. This metabolic disease is represented with inappropriate hyperglycemia either due to deficiency of insulin secretion or reduction in the biologic effectiveness of insulin. The pathogenesis of the multifactorial diabetes is very complicated. To control this pandemic disease, the pathophysiology of the disease and stipulated drug targeting covering definite areas are needed. During the progression of a prediabetic patient to diabetic, inflammation plays a key role, including insulin resistance and decreased beta cell secretory capacity. Insulin resistance plays a prominent role in the pathophysiology of various macrovascular complications. Drugs targeting through different inflammatory pathways represent a newer approach in the therapeutics of diabetes and its related complications.

Keywords

Diabetes Glycemic index Cardiovascular risk Insulin resistance Inflammation Atherosclerotic plaque Atherosclerosis Metabolic syndrome Glycemic load Cardiovascular disease Type 2 diabetes 

References

  1. Abdelmouttaleb I, Danchin N, Ilardo C, Aimone-Gastin I, Angioi M, Lozniewski A, Loubinoux J, Le Faou A, Gueant JL (1999) C-reactive protein and coronary artery disease: additional evidence of the implication of an inflammatory process in acute coronary syndromes. Am Heart J 137:346–351CrossRefPubMedGoogle Scholar
  2. Al-Hamodi Z et al (2014) Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol Metab Syndr 6:99CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  4. Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, Tracy RP (2001) The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 50:2384–2389CrossRefPubMedGoogle Scholar
  5. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17:4–12PubMedGoogle Scholar
  6. Bergman RN (1989) Lilly lecture 1989: toward physiological understanding of glucose tolerance: minimalmodel approach. Diabetes 38:1512–1527CrossRefPubMedGoogle Scholar
  7. Biasucci LM, Liuzzo G, Della Bona R et al (2009) Different apparent prognostic value of hsCRP in type 2 diabetic and nondiabetic patients with acute coronary syndromes. Clin Chem 55:365–368CrossRefPubMedGoogle Scholar
  8. Blaschke F, Spanheimer R, Khan M, Law RE (2006) Vascular effects of TZDs: new implications. Vascul Pharmacol 45(1):3–18, Epub 2006 Jun 5CrossRefPubMedGoogle Scholar
  9. Centers for Disease Control and Prevention [CDC], 2006. Diabetes data and trends [online]. URL: http://www.cdc.gov/diabetes/statistics
  10. Cheung AT, Ree D, Kolls JK, Fuselier J, Coy DH, Bryer-Ash M (1998) An in vivo model for elucidation of the mechanism of tumor necrosis factor-alpha (TNF-alpha)-induced insulin resistance: evidence for differential regulation of insulin signaling by TNF-alpha. Endocrinology 139:4928–4935PubMedGoogle Scholar
  11. Dandona P (2008) Effects of antidiabetic and antihyperlipidemic agents on C-reactive protein. Mayo Clin Proc 83(3):333–342. doi: 10.4065/83.3.333 CrossRefPubMedGoogle Scholar
  12. Dandona P, Aljada A, O’donnell A, Dhindsa S, Garg R (2004) Insulin as an anti-inflammatory and antiatherosclerotic hormone. Metab Syndr Relat Disord 2(2):137–142. doi: 10.1089/met.2004.2.137
  13. Dasu M, Jialal I (2010) Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptor. Am J Physiol Endocrinol Metab 300:E145–E154CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duncan BB, Schmidt MI, Offenbacher S, Wu KK, Savage PJ, Heiss G (1999) Factor VIII and other hemostasis variables are related to incident diabetes in adults. Diabetes Care 22:767–772CrossRefPubMedGoogle Scholar
  15. Dungan K, Binkley P, Osei K (2015) GlycA is a Novel Marker of Inflammation Among Non-Critically Ill Hospitalized Patients with Type 2 Diabetes. Inflammation [Epub ahead of print]Google Scholar
  16. Dunmore SJ, Brown JE (2013) The role of adipokines in β-cell failure of type 2 diabetes. J Endocrinol 216:T37–T45 [PMID: 22991412 DOI:  10.1530/JOE-12-0278]CrossRefPubMedGoogle Scholar
  17. Esfahani A, Wong JM, Mirrahimi A, Srichaikul K, Jenkins DJ, Kendall CW (2009) The glycemic index: physiological significance. J Am Coll Nutr 28(Suppl):439S–445SCrossRefPubMedGoogle Scholar
  18. Festa A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 102:42–47CrossRefPubMedGoogle Scholar
  19. Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM (2000) Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 102:1000–1006CrossRefPubMedGoogle Scholar
  20. Ford ES (1999) Body mass index, diabetes, and C-reactive protein among U.S. Adults. Diabetes Care 22:1971–1977CrossRefPubMedGoogle Scholar
  21. Frohlich M, Imhof A, Berg G, Hutchinson WL, Pepys MB, Boeing H, Muche R, Brenner H, Koenig W (2000) Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes Care 23:1835–1839CrossRefPubMedGoogle Scholar
  22. Goldberg RB (2000) Cardiovascular disease in diabetic patients. Med Clin North Am 84:81–93CrossRefPubMedGoogle Scholar
  23. Gouni-Berthold I, Berthold HK (2013) The role of niacin in lipid-lowering treatment: are we aiming too high? Curr Pharm Des 19(17):3094–3106CrossRefPubMedGoogle Scholar
  24. Grau AJ, Buggle F, Becher H, Werle E, Hacke W (1996) The association of leukocyte count, fibrinogen and C-reactive protein with vascular risk factors and ischemic vascular diseases. Thromb Res 82:245–255CrossRefPubMedGoogle Scholar
  25. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112(17):2735–2752CrossRefPubMedGoogle Scholar
  26. Guzmán MA, Olguín MA (2014) Association between ferritin, high sensitivity c-reactive protein (hsCRP) and relative abundance of Hepcidin mRNA with the risk of type 2 diabetes in obese subjects. Nutr Hosp 30(3):577–584Google Scholar
  27. Hansen D, Dendale P, Beelen M, Jonkers RA, Mullens A, Corluy L et al (2010) Plasma adipokine and inflammatory marker concentrations are altered in obese, as opposed to non-obese, type 2 diabetes patients. Eur J Appl Physiol 109(3):397–404CrossRefPubMedPubMedCentralGoogle Scholar
  28. Yasuaki H, Jackson JL, Takumi H, Norio F, Fumiaki N, Shunichi F, Satoru T, Hitoshi I (2014a) Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Metobol Clinic Exp 63:431–440CrossRefGoogle Scholar
  29. Hayashino Y, Mashitani T, Tsujii S, Ishii H, for the Diabetes Distress and Care Registry at Tenri Study Group (2014b). Serum high-sensitivity C-reactive protein levels are associated with high risk of development, not progression, of diabetic nephropathy among Japanese Type 2 diabetic patients: a prospective cohort study (Diabetes Distress and Care Registry at Tenri [DDCRT7]). Diabetes Care 37Google Scholar
  30. Yasuaki H, Jackson JL, Takumi H, Norio F, Fumiaki N, Shunichi F, Satoru T, Hitoshi I (2014a) Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Metobol Clinic Exp 63:431–440CrossRefGoogle Scholar
  31. Hayashino Y, Mashitani T, Tsujii S, Ishii H, for the Diabetes Distress and Care Registry at Tenri Study Group (2014b). Serum high-sensitivity C-reactive protein levels are associated with high risk of development, not progression, of diabetic nephropathy among Japanese Type 2 diabetic patients: a prospective cohort study (Diabetes Distress and Care Registry at Tenri [DDCRT7]). Diabetes Care 37Google Scholar
  32. Hopps E, Canino B, Caimi G (2011) Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol 48(3):183–189. doi: 10.1007/s00592-011-0278-9, Epub 2011 Mar 24CrossRefPubMedGoogle Scholar
  33. Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93:S57–S63CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kahn SE (2008) The relative contributions of insulin resistance and beta-cell dysfunction in the pathophysiology of type 2 diabetes. Diabetologia 46:3–19Google Scholar
  35. Kampoli AM, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, Stefanadis C (2011) Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 17:4147–4158CrossRefPubMedGoogle Scholar
  36. Karbowska A, Boratyńska M, Klinger M (2009) Resistin: a pathogenic factor or a biomarker of metabolic disorders and inflammation. Postepy Hig Med Dosw (Online) 63:485–491Google Scholar
  37. Kaul K, Hodgkinson A, Tarr JM, Kohner EM, Chibber R (2010) Is inflammation a common retinal-renal-nerve pathogenic link in diabetes? Curr Diabetes Rev 6(5):294–303CrossRefPubMedGoogle Scholar
  38. Kervinen H, Palosuo T, Manninen V, Tenkanen L, Vaarala O, Manttari M (2001) Joint effects of C-reactive protein and other risk factors on acute coronary events. Am Heart J 141:580–585CrossRefPubMedGoogle Scholar
  39. Koren-Morag N, Goldbourt U, Tanne D (2005) Relation between the metabolic syndrome and ischemic stroke or transient ischemic attack: a prospective cohort study in patients with atherosclerotic cardiovascular disease. Stroke 36(7):1366–1371CrossRefPubMedGoogle Scholar
  40. Kurl S, Laukkanen JA, Niskanen L, Laaksonen D, Sivenius J (2006) Nyysso¨nen K, et al. Metabolic syndrome and the risk of stroke in middle-aged men. Stroke 37(3):806–811CrossRefPubMedGoogle Scholar
  41. Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Müller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925 [PMID: 21593202 DOI:  10.2337/db10-1707]CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee JM, Kim SR, Yoo SJ, Hong OK, Son HS, Chang SA (2009) The relationship between adipokines, metabolic parameters and insulin resistance in patients with metabolic syndrome and type 2 diabetes. J Int Med Res 37:1803–1812CrossRefPubMedGoogle Scholar
  43. Meigs JB, Hu FB, Rifai N, Manson JE (2004) Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291:1978–1986CrossRefPubMedGoogle Scholar
  44. Meigs JB, Larson MG, Fox CS, Keaney JF Jr, Vasan RS, Benjamin EJ (2007) Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care 30:2529–2535CrossRefPubMedGoogle Scholar
  45. Mekonnen G, Corban MT, Hung OY, Eshtehardi P, Eapen DJ, Al-Kassem H, Rasoul-Arzrumly E, Gogas BD, McDaniel MC, Pielak T, Thorball CW, Sperling L, Quyyumi AA, Samady H (2014) Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease. Atherosclerosis 239(1):55–60. doi: 10.1016/j.atherosclerosis.2014.12.025. [Epub ahead of print]CrossRefPubMedGoogle Scholar
  46. Mirrahimi A, Chiavaroli L, Srichaikul K, Augustin LS, Sievenpiper JL, Kendall CW, Jenkins DJ (2014) The role of glycemic index and glycemic load in cardiovascular disease and its risk factors: a review of the recent literature. Curr Atheroscler Rep 16(1):381. doi: 10.1007/s11883-013-0381-1 CrossRefPubMedGoogle Scholar
  47. Mirza S, Hossain M, Mathews C, Martinez P, Pino P, Gay JL, Rentfro A, McCormick JB, Fisher-Hoch SP (2012) Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine 57(1):136–142CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P (2000) Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85:2970–2973CrossRefPubMedGoogle Scholar
  49. Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P (2002) Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 75:767–772PubMedGoogle Scholar
  50. Mojiminiyi OA, Abdella NA, Al Arouj M, Ben Nakhi A (2007) Adiponectin, insulin resistance and clinical expression of the metabolic syndrome in patients with type 2 diabetes. Int J Obes 31:213–220CrossRefGoogle Scholar
  51. Mugabo Y, Li L, Renier G (2010) The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev 6(1):27–34CrossRefPubMedGoogle Scholar
  52. Ndumele CE, Pradhan AD, Ridker PM (2006) Interrelationships between inflammation, C-reactive protein, and insulin resistance. J Cardiometab Syndr 1(3):190–196CrossRefPubMedGoogle Scholar
  53. Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS (2004) Association of the metabolic syndrome with history of myocardial infarction and stroke in the third national health and nutrition examination survey. Circulation 109(1):42–46CrossRefPubMedGoogle Scholar
  54. Nix WA, Zirwes R, Bangert V, Kaiser RP, Schilling M, Hostalek U, Obeid R (2015) Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res Clin Pract 107:157–165CrossRefPubMedGoogle Scholar
  55. Onat A, Ademoğlu E, Can G, Altay S, Karagöz A, Köroğlu B, Yüksel H (2014) Rheumatoid factor mediates excess serum lipoprotein(a) for independent association with type 2 diabetes in men. Anadolu Kardiyol Derg 15:782–788. doi: 10.5152/akd.2014.5826 Google Scholar
  56. Paiva MS, Serrano CV Jr, Nicolau JC et al (2008) Differences in the inflammatory response between patients with and those without diabetes mellitus after coronary stenting. J Interv Cardiol 21:403–409CrossRefPubMedGoogle Scholar
  57. Pfützner A, Schöndorf T, Hanefeld M, Forst T (2010) High-sensitivity C-reactive protein predicts cardiovascular risk in diabetic and nondiabetic patients: effects of insulin-sensitizing treatment with pioglitazone. J Diabetes Sci Technol 4(3):706–716CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41:1241–1248CrossRefPubMedGoogle Scholar
  59. Pickup JC, Mattock MB, Chusney GD, Burt D (1997) NIDDM as a disease of the innate immune system: association of the acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40:1286–1292CrossRefPubMedGoogle Scholar
  60. Pietropaolo M, Barinas-Mitchell E, Pieropaolo SL, Kuller LH, Trucco M (2000) Evidence of islet cell autoimmunity in elderly patients with type 2 diabetes. Diabetes 49:32–38CrossRefPubMedGoogle Scholar
  61. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334CrossRefPubMedGoogle Scholar
  62. Rasouli N, Kern PA (2008) Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 93:S64–S73CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ridker PM, Glynn RJ, Hennekens CH (1998a) C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 97:2007–2011CrossRefPubMedGoogle Scholar
  64. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH (1998b) Prospective study of Creactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98(8):731–733CrossRefPubMedGoogle Scholar
  65. Ridker PM, Stampfer MJ, Rifai N (2001a) Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285:2481–2485CrossRefPubMedGoogle Scholar
  66. Ridker PM, Rifai N, Lowenthal SP (2001b) Rapid reduction of C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation 103:1191–1193CrossRefPubMedGoogle Scholar
  67. Rodriguez-Moran M, Guerrero-Romero F (1999) Increased levels of C-reactive protein in noncontrolled type II diabetic subjects. J Diabetes Complications 13:211–215CrossRefPubMedGoogle Scholar
  68. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, Nagai M, Matsuzawa Y, Funahashi T (2004) Adiponectin as a biomarker of the metabolic syndrome. Circ J 68:975–981CrossRefPubMedGoogle Scholar
  69. Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G (1999) Markers of inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study): a cohort study. Lancet 353:1649–1652CrossRefPubMedGoogle Scholar
  70. Schultz DR, Arnold PL (1990) Properties of four acute phase proteins: C-reactive protein, serum amyloid A protein, a1-acid glycoprotein and fibrinogen. Semin Arthritis Rheum 20:129–147CrossRefPubMedGoogle Scholar
  71. Shantsila E, Kamphuisen PW, Lip GY (2010) Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost 8:2358–2368CrossRefPubMedGoogle Scholar
  72. Spranger J, Kroke A, Möhlig M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes results of the prospective population based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817CrossRefPubMedGoogle Scholar
  73. Stumvoll M, Goldstein B, van Haeften T (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346CrossRefPubMedGoogle Scholar
  74. Su SC, Pei D, Hsieh CH, Hsiao FC, Wu CZ, Hung YJ (2010) Circulating pro-inflammatory cytokines and adiponectin in young men with type 2 diabetes. Acta Diabetol 8:113–119Google Scholar
  75. Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, Stefanadis C (2013) Diabetes Mellitus-Associated Vascular Impairment: Novel Circulating Biomarkers and Therapeutic Approaches. J Am Coll Cardiol 62:667–676CrossRefPubMedGoogle Scholar
  76. Tsui H, Paltser G, Chan Y, Dorfman R, Dosch HM (2011) ‘Sensing’ the link between type 1 and type 2 diabetes. Diabetes Metab Res Rev 27:913–918, PMID: 22069284CrossRefPubMedGoogle Scholar
  77. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR (1993) Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 42:359–362CrossRefPubMedGoogle Scholar
  78. Tuomilehto J, Zimmet P, Mackay IR, Koskela P, Vidgren G, Toivanen L, Tuomilehto-Wolf E, Kohtamaki K, Stengard J, Rowley MJ (1994) Antibodies to glutamic acid decarboxylase as predictors of insulin-dependent diabetes mellitus before clinical onset of disease. Lancet 343:1383–1385CrossRefPubMedGoogle Scholar
  79. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, Holman RR (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS 23). BMJ 316:823–828CrossRefPubMedPubMedCentralGoogle Scholar
  80. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614CrossRefPubMedGoogle Scholar
  81. Ventre J, Doebber T, Wu M, MacNaul K, Stevens K, Pasparakis M, Kollias G, Moller DE (1997) Targeted disruption of the tumor necrosis factor-alpha gene. metabolic consequences in obese and nonobese mice. Diabetes 46:1526–1531CrossRefPubMedGoogle Scholar
  82. Voils SA, Cooper-DeHoff RM (2014) Association between high sensitivity C-reactive protein and metabolic syndrome in subjects completing the National Health and Nutrition Examination Survey (NHANES) 2009–10. Diabetol Metab Syndr Clini Res Rev 8:88–90CrossRefGoogle Scholar
  83. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P, Liu LG (2013) Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 36(1):166–175. doi: 10.2337/dc12-0702 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wei M, Gaskill SP, Haffner SM, Stern MP (1998) Effects of diabetes and level of glycemia on all-cause mortality: the San Antonio Heart Study. Diabetes Care 21:1167–1172CrossRefPubMedGoogle Scholar
  85. Wu T, Dorn JP, Donahue RP, Sempos CT, Trevisan M (2002a) Associations of serum C-reactive protein with fasting insulin, glucose, and glycosylated hemoglobin: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 155(1):65–71CrossRefPubMedGoogle Scholar
  86. Wu Y, Ji SR, Wang HW, Sui SF (2002b) Study of the spontaneous dissociation of rabbit C – reactive protein. Biochem Mosc 67(12):1377–1382CrossRefGoogle Scholar
  87. Xu Y, Whitmer K (2006) C-reactive protein and cardiovascular disease in people with diabetes: high-sensitivity CRP testing can help assess risk for future cardiovascular disease events in this population. Am J Nurs 106(8):66–72CrossRefPubMedGoogle Scholar
  88. Yeo ES, Hwang JY, Park JE, Choi YJ, Huh KB, Kim WY (2010) Tumor necrosis factor (TNF-alpha) and C-reactive protein (CRP) are positively associated with the risk of chronic kidney disease in patients with type 2 diabetes. Yonsei Med J 51(4):519–525CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Waliza Ansar
    • 1
  • Shyamasree Ghosh
    • 2
  1. 1.Department of ZoologyBehala CollegeKolkataIndia
  2. 2.National Institute of Science EducationSchool of Biological SciencesBhubaneswarIndia

Personalised recommendations