Advertisement

Microheterogeneity of Proteins: Role in Diseases

  • Waliza Ansar
  • Shyamasree Ghosh
Chapter

Abstract

Protein posttranslational modifications largely influence their biological functions. The functions included effect on receptor binding, metabolism of the protein, tissue uptake, degradation, excretion, and protein–protein interactions. Modifications of proteins at and after translation also called as posttranslational modifications or PTM occur at a normal physiological concentration of the protein. However, in some diseases, modifications highly specific to the disease also are known to occur. Thus, disease-specific posttranslational modifications find importance as diagnostic markers in clinical medicine. Different approaches, most of which are analytical to study the posttranslational modifications in protein together their interactions, and their complex structure and function are illustrated by various researchers in immunology, biochemistry, biophysics, and clinical medicine and in proteomics. Immuno assay based affinity purification of protein by HPLC and chromatographic methods, and characterization of proteins by lectin binding assays, biophysical methods like MS or mass spectrometry, and surface-enhanced laser desorption/ionization method find importance as diagnostic techniques in clinical proteomic studies, in the detection of the disease-specific protein modification.

Keywords

Microheterogeneity Disease Posttranslational modifications Clinical proteomics 

References

  1. Ali S, Bassett JR (1995) Studies on the role of glycosylation in the origin of the electrophoretic variants for rat corticosteroid-binding globulin. Steroids 60(11):743–752CrossRefPubMedGoogle Scholar
  2. Ansar W, Bandyopadhyay SM, Chowdhury S, Habib SH, Mandal C (2006) Role of C-reactive protein in complement mediated hemolysis in Malaria. Glycoconj J 23(3–4):233–240CrossRefPubMedGoogle Scholar
  3. Ansar W, Habib SK, Roy S, Mandal C, Mandal C (2009a) Unraveling the C-reactive protein complement-cascade in destruction of red blood cells: potential pathological implications in Plasmodium falciparum malaria. Cell Physiol Biochem 23(1–3):175–190. doi: 10.1159/000204106. Epub 2009 Feb 18CrossRefPubMedGoogle Scholar
  4. Ansar W, Mukhopadhyay S, Habib SK, Basu S, Saha B, Sen AK, Mandal CN, Mandal C (2009b) Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis. Glycoconj J 26(9):1151–69. doi: 10.1007/s10719-009-9236-y CrossRefPubMedGoogle Scholar
  5. Armstrong PB, Swarnakar S, Srimal S, Misquith S, Hahn EA, Aimes RT, Quigley JP (1996) A cytolytic function for a sialic acid-binding lectin that is a member of the pentraxin family of proteins. J Biol Chem 271(25):14717–14721CrossRefPubMedGoogle Scholar
  6. Arthur JM (2003) Proteomics. Curr Opin Nephrol Hypertens 12(4):423–430CrossRefPubMedGoogle Scholar
  7. Ballou SP, Lozanski FB, Hodder S, Rzewnicki DL, Mion LC, Sipe JD, Ford AB, Kushner I (1996) Quantitative and qualitative alterations of acute-phase proteins in healthy elderly persons. Age Ageing 25(3):224–230CrossRefPubMedGoogle Scholar
  8. Batanero E, Villalba M, Rodríguez R (1994) Glycosylation site of the major allergen from olive tree pollen. Allergenic implications of the carbohydrate moiety. Mol Immunol 31(1):31–37CrossRefPubMedGoogle Scholar
  9. Baumann M, Meri S (2004) Techniques for studying protein heterogeneity and post-translational modifications. Expert Rev Proteomics 1(2):207–217CrossRefPubMedGoogle Scholar
  10. Beckman L, Beckman G (1967) Individual and organ-specific variations of human acid phosphatase. Biochem Genet 1(2):145–153CrossRefPubMedGoogle Scholar
  11. Burgess RR, Thompson NE (2002) Advances in gentle immunoaffinity chromatography. Curr Opin Biotechnol 13(4):304–308CrossRefPubMedGoogle Scholar
  12. Castagna L, Zarzur J, Filipetti M, Landa C (1996) Isolation and partial characterization of N-acetyl-D-galactosamine-binding lectins from Epiphragmophora trenquelleonis snail. J Biochem 119(2):372–377CrossRefPubMedGoogle Scholar
  13. Clack JW, Juhl M, Rice CA, Li J, Witzmann FA (2003) Proteomic analysis of transducin beta-subunit structural heterogeneity. Electrophoresis 24(19–20):3493–3499CrossRefPubMedGoogle Scholar
  14. Clarke NJ, Crow FW, Younkin S, Naylor S (2001) Analysis of in vivo-derived amyloid-beta polypeptides by on-line two-dimensional chromatography-mass spectrometry. Anal Biochem 298(1):32–39CrossRefPubMedGoogle Scholar
  15. Das T, Sen A, Kempf T, Pramanik SR, Mandal C, Mandal C (2003) Induction of glycosylation in human C-reactive protein under different pathological conditions. Biochem J 373(Pt 2):345–355CrossRefPubMedPubMedCentralGoogle Scholar
  16. Das T, Mandal C, Mandal C (2004a) Variations in binding characteristics of glycosylated human C-reactive proteins in different pathological conditions. Glycoconj J 20(9):537–543CrossRefPubMedGoogle Scholar
  17. Das T, Mandal C, Mandal C (2004b) Protein A-a new ligand for human C-reactive protein. FEBS Lett 576:107–113CrossRefPubMedGoogle Scholar
  18. Davies H, Lomas L, Austen B (1999) Profiling of amyloid beta peptide variants using SELDI Protein Chip arrays. Biotechniques 27(6):1258–1261PubMedGoogle Scholar
  19. Davis BG (2004) Biochemistry. Mimicking posttranslational modifications of proteins. Science 303(5657):480–482CrossRefPubMedGoogle Scholar
  20. Figeys D (2004) Combining different ‘omics’ technologies to map and validate protein-protein interactions in humans. Brief Funct Genomic Proteomic 2(4):357–365CrossRefPubMedGoogle Scholar
  21. Figeys D, McBroom LD, Moran MF (2001) Mass spectrometry for the study of protein-protein interactions. Methods 24(3):230–239CrossRefPubMedGoogle Scholar
  22. Gericke B, Raila J, Sehouli J, Haebel S, Könsgen D, Mustea A, Schweigert FJ (2005) Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer 5:133CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gerlach D, Wagner M, Schlott B, Zähringer U, Schmidt KH (2002) Chemical and physicochemical characterization of the sialic acid-specific lectin from Cepaea hortensis. FEMS Microbiol Lett 214(1):61–68CrossRefPubMedGoogle Scholar
  24. Goodarzi MT, Turner GA (1996) A lectin-binding assay for the rapid characterization of the glycosylation of purified glycoproteins. In: Walker JM (ed) The protein protocol handbooks. Humana Press, Totowa. doi: 10.1007/978-1-60327-259-9_98
  25. Grant SG, Husi H (2001) Proteomics of multiprotein complexes: answering fundamental questions in neuroscience. Trends Biotechnol 19(10 Suppl):S49–S54CrossRefPubMedGoogle Scholar
  26. Grzymisławski M, Derc K, Sobieska M, Wiktorowicz K (2006) Microheterogeneity of acute phase proteins in patients with ulcerative colitis. World J Gastroenterol 12(32):5191–5195PubMedPubMedCentralGoogle Scholar
  27. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45(5):593–615PubMedGoogle Scholar
  28. Hanash S (2003) Disease proteomics. Nature 422(6928):226–232CrossRefPubMedGoogle Scholar
  29. Hancock WS (2002) Glycosylation, who cares? J Proteome Res 1(4):297CrossRefPubMedGoogle Scholar
  30. Hansen JE, Larsen VA, Bøg-Hansen TC (1984) The microheterogeneity of alpha 1-acid glycoprotein in inflammatory lung disease, cancer of the lung and normal health. Clin Chim Acta 138(1):41–47CrossRefPubMedGoogle Scholar
  31. Hansen JE, Iversen J, Lihme A, Bøg-Hansen TC (1987) Acute phase reaction, heterogeneity, and microheterogeneity of serum proteins as nonspecific tumor markers inlung cancer. Cancer 60(7):1630–1635CrossRefPubMedGoogle Scholar
  32. Havenaar EC, Drenth JP, van Ommen EC, van der Meer JW, van Dijk W (1995) Elevated serum level and altered glycosylation of alpha 1- acid glycoprotein in hyperimmunoglobulinemia D and periodic fever syndrome: evidence for persistent inflammation. Clin Immunol Immunopathol 76(3 Pt 1):279–284CrossRefPubMedGoogle Scholar
  33. Haynes P, Miller I, Aebersold R, Gemeiner M, Eberini I, Lovati MR, Manzoni C, Vignati M, Gianazza E (1998) Proteins of rat serum: I. Establishing a reference two-dimensional electrophoresis map by immunodetection and microbore high performance liquid chromatography-electrospray mass spectrometry. Electrophoresis 19(8–9):1484–1492CrossRefPubMedGoogle Scholar
  34. Hochstrasser DF, Sanchez JC, Appel RD (2002) Proteomics and its trends facing nature’s complexity. Proteomics 2(7):807–812CrossRefPubMedGoogle Scholar
  35. Hrycaj P, Sobieska M, Mackiewicz S, Müller W (1993) Microheterogeneity of alpha 1 acid glycoprotein in rheumatoid arthritis: dependent on disease duration? Ann Rheum Dis 52(2):138–141CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hrycaj P, Wurm K, Mennet P, Müller W (1996) Microheterogeneity of acute-phase glycoproteins in patients with pulmonary sarcoidosis. Eur Respir J 9(2):313–318CrossRefPubMedGoogle Scholar
  37. Iijima S, Shiba K, Kimura M, Nagai K, Iwai T (2000) Changes of alpha1-acid glycoprotein microheterogeneity in acute inflammation stages analyzed by isoelectricfocusing using serum obtained postoperatively. Electrophoresis 21(4):753–759CrossRefPubMedGoogle Scholar
  38. Iwaki D, Osaki T, Mizunoe Y, Wai SN, Iwanaga S, S K (1999) Functional and structural diversities of C-reactive proteins present in horseshoe crab hemolymph plasma. Eur J Biochem 264(2):314–326CrossRefPubMedGoogle Scholar
  39. Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, McConnell E, Nelson RW (2003) Comparative urine protein phenotyping using mass spectrometric immunoassay. J Proteome Res 2(2):191–197CrossRefPubMedGoogle Scholar
  40. Kushner I (1982) The phenomenon of the acute phase response. Ann N Y Acad Sci 389:39–48CrossRefPubMedGoogle Scholar
  41. Kushner I, Mackiewicz A (1987) Acute phase proteins as disease markers. Dis Markers 5(1):1–11PubMedGoogle Scholar
  42. Lal SP, Christopherson RI, dos Remedios CG (2002) Antibody arrays: an embryonic but rapidly growing technology. Drug Discov Today 7(18 Suppl):S143–S149CrossRefPubMedGoogle Scholar
  43. Lasson A, Göransson J (1999) No microheterogenous changes of plasma C-reactive protein found in man during various diseases. Scand J Clin Lab Invest 59(4):293–304CrossRefPubMedGoogle Scholar
  44. Li P, Mold C, Du Clos TW (1994) Sublytic complement attack exposes C-reactive protein binding sites on cell membranes. J Immunol 152(6):2995–3005PubMedGoogle Scholar
  45. Lim A, Sengupta S, McComb ME, Théberge R, Wilson WG, Costello CE, Jacobsen DW (2003) In vitro and in vivo interactions of homocysteine with human plasma transthyretin. J Biol Chem 278(50):49707–49713. Epub 2003 Sep 24CrossRefPubMedGoogle Scholar
  46. Lin Z, Crockett DK, Lim MS, Elenitoba-Johnson KS (2003) High-throughput analysis of protein/peptide complexes by immunoprecipitation and automated LC-MS/MS. J Biomol Tech 14(2):149–155PubMedPubMedCentralGoogle Scholar
  47. Mackiewicz A, Pawłowski T, Mackiewicz-Pawłowska A, Wiktorowicz K, Mackiewicz S (1987a) Microheterogeneity forms of alpha 1-acid glycoprotein as indicators of rheumatoid arthritis activity. Clin Chim Acta 163(2):185–190CrossRefPubMedGoogle Scholar
  48. Mackiewicz A, Marcinkowska-Pieta R, Ballou S, Mackiewicz S, Kushner I (1987b) Microheterogeneity of alpha 1-acid glycoprotein in the detection of intercurrent infection in systemic lupus erythematosus. Arthritis Rheum 30(5):513–518CrossRefPubMedGoogle Scholar
  49. Mackiewicz A, Khan MA, Reynolds TL, van der Linden S, Kushner I (1989) Serum IgA, acute phase proteins, and glycosylation of alpha 1-acid glycoprotein in ankylosing spondylitis. Ann Rheum Dis 48(2):99–103CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mandal C, Sinha S, Mandal C (1999) Lectin like properties and differential sugar binding characteristics of C-reactive proteins purified from sera of normal and pollutant induced Labeo rohita. Glycoconj J 16(11):741–750CrossRefPubMedGoogle Scholar
  51. Mandal C, Srinivasan GV, Chowdhury S, Chandra S, Mandal C, Schauer R, Mandal C (2009) High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia(ALL): enzyme characterization and correlation with disease status. Glycoconj J 26(1):57–73. doi: 10.1007/s10719-008-9163-3. Epub 2008 Aug 3CrossRefPubMedGoogle Scholar
  52. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21(3):255–261CrossRefPubMedGoogle Scholar
  53. Maudsley S, Rowe IF, de Beer FC, Munn EA, Herbert J, Feinstein A, Pepys MB (1987) Identification and isolation of two pentraxins from bovine serum. Clin Exp Immunol 67(3):662–673PubMedPubMedCentralGoogle Scholar
  54. Molloy MP, Witzmann FA (2002) Proteomics: technologies and applications. Brief Funct Genomic Proteomic 1(1):23–39CrossRefPubMedGoogle Scholar
  55. Morley JJ, Kushner I (1982) Serum C-reactive protein levels in disease. Ann N Y Acad Sci 389:406–418CrossRefPubMedGoogle Scholar
  56. Morris HR, Chatterjee A, Panico M, Green BN, Almeida da Silva MA, Hartley BS (1989) Linked scans of peptides and protein digests: amino acid sequence determination of components of complex mixtures. Rapid Commun Mass Spectrom 3(4):110–116CrossRefPubMedGoogle Scholar
  57. Nair KS, Jaleel A, Asmann YW, Short KR, Raghavakaimal S (2004) Proteomic research: potential opportunities for clinical and physiological investigators. Am J Physiol Endocrinol Metab 286(6):E863–E874CrossRefPubMedGoogle Scholar
  58. Nedelkov D, Tubbs KA, Niederkofler EE, Kiernan UA, Nelson RW (2004) High-throughput comprehensive analysis of human plasma proteins: a step toward population proteomics. Anal Chem 76(6):1733–1737CrossRefPubMedGoogle Scholar
  59. Nelson RW, Nedelkov D, Tubbs KA (2000a) Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 21(6):1155–1163CrossRefPubMedGoogle Scholar
  60. Nelson RW, Nedelkov D, Tubbs KA (2000b) Biomolecular interaction analysis mass spectometry. BIA/MS can detect and characterize proteins in complex biological fluids at the low- to subfemtomole level. Anal Chem 72(11):404A–411ACrossRefPubMedGoogle Scholar
  61. Packer NH, Harrison MJ (1998) Glycobiology and proteomics: is mass spectrometry the Holy Grail? Electrophoresis 19(11):1872–1882CrossRefPubMedGoogle Scholar
  62. Paul I, Mandal C, Mandal C (1998) Effect of environmental pollutants on the C-reactive protein of a freshwater major carp, Catla catla. Dev Comp Immunol 22(5–6):519–532CrossRefPubMedGoogle Scholar
  63. Paul I, Mandal C, Allen AK, Mandal C (2001) Glycosylated molecular variants of C-reactive proteins from the major carp Catla catla in fresh and polluted aquatic environments. Glycoconj J 18(7):547–556CrossRefPubMedGoogle Scholar
  64. Pawłowski T, Mackiewicz A, Mackiewicz S (1986) Studies on microheterogeneity of acute-phase proteins in rheumatoid arthritis by using crossed affinoimmuno-electrophoresis with free concanavalin A. Behring Inst Mitt 80:11–15PubMedGoogle Scholar
  65. Pepys MB, Baltz ML (1983) Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 34:141–212CrossRefPubMedGoogle Scholar
  66. Pos O, Oostendorp RA, van der Stelt ME, Scheper RJ, Van Dijk W (1990) Con A-nonreactive human alpha 1-acid glycoprotein (AGP) is more effective in modulation of lymphocyte proliferation than Con A-reactive AGP serum variants. Inflammation 14(2):133–141CrossRefPubMedGoogle Scholar
  67. Potempa LA, Maldonado BA, Laurent P, Zemel ES, Gewurz H (1983) Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol 20(11):1165–1175CrossRefPubMedGoogle Scholar
  68. Raynes J (1982) Variations in the relative proportions of microheterogeneous forms of plasma glycoproteins in pregnancy and disease. Biomed Pharmacother 36(2):77–86PubMedGoogle Scholar
  69. Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A (2004) A structural perspective on protein-protein interactions. Curr Opin Struct Biol 14(3):313–324CrossRefPubMedGoogle Scholar
  70. Schweigert FJ (2005) Characterisation of protein microheterogeneity and protein complexes using on-chip immunoaffinity purification-mass spectrometry. Brief Funct Genomic Proteomic 4(1):7–15CrossRefPubMedGoogle Scholar
  71. Shukla AK, Schauer R (1982) Fluorimetric determination of unsubstituted and 9(8)-O-acetylated sialic acids in erythrocyte membranes. Hoppe Seylers Z Physiol Chem 363(3):255–262CrossRefPubMedGoogle Scholar
  72. Sinha S, Mandal C (1996) Microheterogeneity of C-reactive protein in the sera of fish Labeo rohita induced by metal pollutants. Biochem Biophys Res Commun 226(3):681–687CrossRefPubMedGoogle Scholar
  73. Sinha S, Mandal C, Allen AK, Mandal C (2001) Acute phase response of C-reactive protein of Labeo rohita to aquatic pollutants is accompanied by the appearance of distinct molecular forms. Arch Biochem Biophys 396(2):139–150CrossRefPubMedGoogle Scholar
  74. Sloneker JH (1972) Gas–liquid chromatography of alditol acetates. In: Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry, VI edn. Academic Press Inc., New York, pp 20–24.Google Scholar
  75. Smith JK, Whitby LG (1968) The heterogeneity of prostatic acid phosphatase. Biochim Biophys Acta 151(3):607–618CrossRefPubMedGoogle Scholar
  76. Spiro RC, Parsons WG, Perry SK, Caulfield JP, Hein A, Reisfeld RA, Harper JR, Austen KF, Stevens RL (1986) Inhibition of post-translational modification and surface expression of a melanoma-associated chondroitin sulfate proteoglycan by diethylcarbamazine or ammonium chloride. J Biol Chem 261(11):5121–5129PubMedGoogle Scholar
  77. Srinivasan N, White HE, Emsley J, Wood SP, Pepys MB, Blundell TL (1994) Comparative analyses of pentraxins: Implications for protomer assembly and ligand binding. Structure 2(11):1017–1027CrossRefPubMedGoogle Scholar
  78. Sydor JR, Scalf M, Sideris S, Mao GD, Pandey Y, Tan M, Mariano M, Moran MF, Nock S, Wagner P (2003) Chip-based analysis of protein-protein interactions by fluorescence detection and on-chip immunoprecipitation combined with microLC-MS/MS analysis. Anal Chem 75(22):6163–6170CrossRefPubMedGoogle Scholar
  79. Szalai AJ, Norcum MT, Bly JE, Clem LW (1992) Isolation of an acute-phase phosphorylcholine-reactive pentraxin from channel catfish (Ictalurus punctatus). Comp Biochem Physiol B 102(3):535–543PubMedGoogle Scholar
  80. Tillett WS, Francis T (1930) Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med 52(4):561–571CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tolson J, Bogumil R, Brunst E, Beck H, Elsner R, Humeny A, Kratzin H, Deeg M, Kuczyk M, Mueller GA, Mueller CA, Flad T (2004) Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest 84(7):845–856CrossRefPubMedGoogle Scholar
  82. Tubbs KA, Nedelkov D, Nelson RW (2001) Detection and quantification of beta-2-microglobulin using mass spectrometric immunoassay. Anal Biochem 289(1):26–35CrossRefPubMedGoogle Scholar
  83. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197CrossRefPubMedGoogle Scholar
  84. Wang HW, Wu Y, Chen Y, Sui SF (2002) Polymorphism of structural forms of C-reactive protein. Int J Mol Med 9(6):665–671PubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Waliza Ansar
    • 1
  • Shyamasree Ghosh
    • 2
  1. 1.Department of ZoologyBehala CollegeKolkataIndia
  2. 2.National Institute of Science EducationSchool of Biological SciencesBhubaneswarIndia

Personalised recommendations