Skip to main content

Abstract

Amongst the sap-sucking hemipteran scale insects, the pseudococcids (mealybugs) deserve a special place in pursuance of implying a peculiar situation in which sex determining mechanism and of the prevalence of puzzling meiotic chromosome behaviour. Pseudococcids represent sex-specific heterochromatization of the entire set of chromosome and transcriptional silencing of all male-oriented chromosome systems. In recent years, there have been significant contributions made in towards current understandings of mealybug chromosome systems essentially oriented upon molecular level progression of “genomic imprinting” phenomenon. This report will present available information pertaining to the types of cytological changes that occur at the molecular level organization and how such kind of heterochromatin status might be maintained. As this apparent from the foregoings based on the mealybug chromosomes, the role of constitutively heterochromatic zones in the genome has been defined facilitatively by means of specialized classical staining protocol. It seems evident enough to point out that the explicit nature of facultative heterochromatinization programme (formulated by three-pronged approach: the DNA sequences, the biochemical milieu and the chromatin remodeling) for chromatin-based differences that prevail in the maternal and paternal genomes. It is also apparent that the mealybug system may offer providing as a robust genetic example for the stable maintenance of chromatin code through to mitosis and meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achwal CW, Chandra HS (1982) A sensitive immunochemical method for detection of 5mC in DNA fragments. FEBS Lett 150:469–472

    Article  CAS  PubMed  Google Scholar 

  • Achwal CW, Iyer CA, Chandra HS (1983) Immunochemical evidence for the presence of 5mC, 6mC and 7mG in human, Drosophila and mealybug DNA. FEBS Lett 158:353–358

    Article  CAS  PubMed  Google Scholar 

  • Achwal CW, Ganguly P, Chandra HS (1984) Estimation of the amount of 5 –methylcytosine in Drosophila melanogaster by photoacoustic spectroscopy. EMBO J 3(2):263–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baer D (1965) Asynchronous replication of DNA in a heterochromatic set of chromosomes in Pseudococcus obscurus. Genetics 52:275–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bell JT, Spector TD (2011) A twin approach to unraveling epigenetic. Trends Genet 27(3):116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni S, Prantera G (2003) Imprinted facultative heterochromatization in mealybugs. Genetica 117:271–279

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the Coccid Planococcus citri. Genetics 151:1471–1478

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bongiorni S, Pasqualini B, Taranta M, Singh B, Prantera G (2007) Epigenetic regulation of facultative heterochromatinization in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway. J Cell Sci 120:1072–1080

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni S, Mazzuoli M, Masci S, Prantera G (2001) Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128:3809–3817

    Google Scholar 

  • Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341

    Article  PubMed  Google Scholar 

  • Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh B, Prantera G (2009) Epigenetic marks for chromosome imprinting during spermatogenesis in coccoids. Chromosoma 118:501–512

    Article  PubMed  Google Scholar 

  • Brown SW (1958) The chromosomes of an Orthezia species (Coccoidea- Homoptera). Cytologia 23:429–434

    Article  Google Scholar 

  • Brown SW (1959) Lecanoid chromosome behavior in three more families of the Coccoidea (Homoptera). Chromosoma 10:278–300

    Article  Google Scholar 

  • Brown SW (1961) Fracture and fusion of coccid chromosomes. Nature 191:1419–1420

    Article  CAS  PubMed  Google Scholar 

  • Brown SW (1963) The Comstockiella system of chromosome behavior in the armored scale insects (Coccoidea: Diaspididae). Chromosoma 14:360–406

    Article  Google Scholar 

  • Brown SW (1964) Automatic frequency response in evolution of male haploidy and other coccid chromosome systems. Genetics 49:797–817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brown SW (1965) Chromosomal survey of the armored and palm scale insects (Coccoidea: Diaspididae and Phoenicococcidae). Hilgardia 36:189–294

    Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151:417–425

    Article  CAS  PubMed  Google Scholar 

  • Brown SW (1969) Developmental control of heterochromatization in coccoids. Genetics 61(No. 1, part 2, Suppl):191–198

    Google Scholar 

  • Brown SW (1977) Adaptive status and genetic regulation in major evolutionary changes of coccid chromosome systems. Nucleus 20:145–157

    Google Scholar 

  • Brown SW, Bennett FD (1957) On sex determination in the Diaspine scale Pseudaulacaspis pentagona (Targ) (Coccoidea). Genetics 42:510–523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brown SW, Chandra HS (1977) Chromosome imprinting and the differential regulation of homologous chromosomes. In: Goldstein L, Prescott DM (ed) Cell biology a comprehensive treatise, Academic press, New York, vol 1, pp 109–189

    Google Scholar 

  • Brown SW, Cleveland C (1968) Meiosis in the male of Puto albicans (Coccoidea-Homoptera). Chromosoma 24:210–232

    Article  CAS  PubMed  Google Scholar 

  • Brown SW, Nelson-Rees WA (1961) Radiation analysis of a lecanoid genetic system. Genetics 46:983–1007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brown SW, Nur U (1964) Heterochromatic chromosomes in Coccoids. Science 145:130–136

    Article  CAS  PubMed  Google Scholar 

  • Brown SW, Weigmann LI (1969) Cytogenetics of the mealybug Planococcus citri (Risso). Chromosoma 28:255–279

    Article  Google Scholar 

  • Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Balabio A, Pettigrew AL, Ledbetter DH, Levy E, Craig IW, Willard HF (1991) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349:82–84

    Article  CAS  PubMed  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Inter science, New York

    Google Scholar 

  • Buglia GL, Ferraro M (2004) Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 113(6):284–294

    Article  PubMed  Google Scholar 

  • Buglia GL, Predazzi V, Ferraro M (1999) Cytosine methylation is not involved in the heterochromatization of the paternal genome of mealybug Planococcus citri. Chromosom Res 6:1–3

    Google Scholar 

  • Buglia GL, Dionisi D, Ferraro M (2009) The amount of heterochromatic proteins in the egg is correlated with sex-determination in Planococcus citri (Homoptera: Coccoidea). Chromosoma 118(6):737–746

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ (1983) The evolution of sex determining mechanisms. Benjamin Cummings, Menlo Park

    Google Scholar 

  • Cairns BR (2007) Chromatin remodeling! Insights and intrigue from single molecule studies. Nat Struct Mol Biol 14(1):1989–1996

    Google Scholar 

  • Camacho JPM, Belda J, Cabrero J (1985) Meiotic behaviour of the holocentric chromosomes of Nezara viridula (Insecta: Heteroptera) analyzed by C-banding and silver impregnation. Can J Genet Cytol 27:490–497

    Article  Google Scholar 

  • Carter W (1962) Insects in relation to plant diseases. Interscience Publishers/Willey, NewYork, pp 247–265

    Google Scholar 

  • Cattanach BM (1974) Position effect variegation in the mouse. Genet Res 23:291–306

    Article  CAS  PubMed  Google Scholar 

  • Chadwick BP, Willard HF (2004) Multiple spatially distinct types of facultative heterochromatin of the human inactive X-chromosome. PNAS 101:17450–17455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandra HS (1962) Inverse meiosis in triploid females of the mealybug, Planococcus citri. Genetics 47:1441–1454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandra HS (1963a) Cytogenetic studies following high dosage paternal irradiation in the mealybug. Planococcus citri I. Cytology of X1 females and the problem of lecanoid sex determination. Chromosoma 14:310–329

    Article  Google Scholar 

  • Chandra HS (1963b) Cytogenetic studies following high dosage paternal irradiation in the mealybug. Planococcus citri II. Cytology of X1 females and the problem of lecanoid sex determination. Chromosoma 14:330–346

    Article  Google Scholar 

  • Chandra HS (1971) Inactivation of whole chromosomes in mammalian X-chromosomes. Nature 253:165–168

    Article  Google Scholar 

  • Chandra HS, Brown SW (1973) Regulation of X-chromosome inactivation in mammals. Genetics 78:342–349

    Google Scholar 

  • Chandra HS, Brown SW (1975) Chromosome imprinting and the mammalian X chromosome. Nature 253:165–168

    Article  CAS  PubMed  Google Scholar 

  • Chauhan NS (1970) Genetic evidence of an unorthodox chromosomal system in the lac insect, Kerria lacca (Kerr). Genet Res 16:341–344

    Article  CAS  PubMed  Google Scholar 

  • Chauhan NS (1977) Gene expression and transmission in Kerria lacca (Kerr). Heredity 38:155–159

    Article  Google Scholar 

  • Cook LG (2000) Extraordinary and extensive karyotypic variation: A 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera: Eriococcidae). Genome 43:255–263

    Article  CAS  PubMed  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  CAS  PubMed  Google Scholar 

  • D’Aiuto L, de las Heras JI, Ross A, Shen MH, Cooke H (2003) Generation of a telomere-based episomal vector. Biotechnol Prog 19:1775–1780

    Google Scholar 

  • De Lange T (2005) The protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of vertebrate embryo. Nat Rev Genet 1(3):171–181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deobagkar DN, Muralidharan K, Devare SG, Kalghatgi K, Chandra HS (1982) The mealybug chromosome system I: unusual methylated bases and dinucleotides in DNA of a Planococcus species. J Biosci 4:513–526

    Article  CAS  Google Scholar 

  • Deobagkar DN, Shankar V, Deobagkar DD (1986) Separation of 5-methylcytosine-rich DNA using immobilized antibody. Enzyme Microb Technol 8:97–100

    Article  CAS  Google Scholar 

  • Devajyothi C, Brahmachari V (1989) Modulation of DNA methyl transferase during the life cycle of a Planococcus lilacinus. FEBS Lett 250:134–138

    Article  CAS  Google Scholar 

  • Devajyothi C, Brahmachari V (1992) Detection of CpA methylase in an insect system: characterisation and substrate specificity. Mol Cell Biochem 110:103–111

    Article  CAS  PubMed  Google Scholar 

  • Dikshith TSS (1964) Chromosome behaviour in Laccifer lacca (Kerr) Lacciferidae-Coccoidea. Cytologia 29:337–345

    Article  Google Scholar 

  • Dikshith TSS (1966) Spermiogenesis in Laccifer lacca (Kerr) (Lacciferidae-Coccoidea). Cytologia 31:302–308

    Article  Google Scholar 

  • Drozdovsky EM (1966) On chromosomal sets in some coccoids (Homoptera: Coccoidea). Entomologicheskoe Obozrenie 45(4):712–714 [In Russian]

    Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP-1 protein family: getting a grip on chromatin current opinion. Genet Dev 10:204–210

    Article  CAS  Google Scholar 

  • Epstein H, James TC, Singh PB (1992) Cloning and expression of Drosophila, HP-1 homologs from a mealybug, Planococcus citri. J Cell Sci 101:463–474

    CAS  PubMed  Google Scholar 

  • Esteban MR, Campos MC, Perondini AL, Goday C (1997) Role of microtubules and microtubule organizing centers on meiotic chromosome elimination in Sciara ocellaris. J Cell Sci 110:721–730

    CAS  PubMed  Google Scholar 

  • Fang J, Feng Q, Ketel CS, Wang H, Cao R, Xia L, Erdjudumat-Bromage H, Tempst P, Simon JS, Zhong Y (2002) Purification and functional heterochromatin of SETs a nucleosomal histone & lysine −20- specific methyl transferase. Curr Biol 12:1086–1099

    Article  CAS  PubMed  Google Scholar 

  • Feil R, Khosla S (1999) Genomic imprinting in mammals: interplay between chromatin and DNA methylation. Trends Genet 15:431–435

    Article  CAS  PubMed  Google Scholar 

  • Ferraro M, Buglia GL, Romano F (2001) Involvement of histone H4 acetylation in the epigenetic inheritance of different activity states of maternally and paternally derived genomes in the Planococcus citri. Chromosoma 110(2):93–101

    Article  CAS  PubMed  Google Scholar 

  • Ferraro M, Epifani C, Bongiorni S, Nardone AM, Parodi-Delfino S, Prantera G (1998) Cytogenetic characterization of the genome of mealybug Planococcus citri (Homoptera, Coccoidea). Caryologia 51(1):37–49

    Article  Google Scholar 

  • Field LM (2000) Methylation and expression of amplified esterase genes in the aphid Myzus persicae (S). Biochem J 349:863–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Field LM, Lyko F, Mandrioli M, Prantera G (2004) DNA methylation in insects. Insect Mol Biol 13(2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xa S, Montgomery MK, Kostos SA, Driver SE, Nelin CC (1998) Potent and sporadic genetic interference by double stranded RNA in C. elegans. Nature 391:306–311

    Article  Google Scholar 

  • Frydrychová R, Grossmann P, Trubac P, Vítková M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47(1):163–178

    Article  PubMed  Google Scholar 

  • Gavrilov IA (2004) Taxonomic and cytogenetic studies of scale insects (Homoptera: Coccinea) of European Russia. Proc Zool Inst RAS 300:77–82

    Google Scholar 

  • Gavrilov IA (2007) A catalog of chromosome numbers and genetic systems of scale insects (Homoptera: Coccinea) of the world. Isr J Entomol 37:1–45

    Google Scholar 

  • Gavrilov IA, Trapeznikova IV (2007) Karyotypes and reproductive biology of some mealybugs (Insecta: Coccinea: Pseudococcidae). Comp Cytogenet 1(2):139–148

    Google Scholar 

  • Gavrilov IA, Trapeznikova IV (2010) Karyotypes of six previously unstudied European mealybugs (Homoptera: Pseudococcidae). Comp Cytogenet 4(2):203–205

    Article  Google Scholar 

  • Gosden RG (2002) Oogenesis as a foundation of embryogenesis. Mol Cell Endocrinol 186:149–153

    Article  CAS  PubMed  Google Scholar 

  • Greider CW (1995) Telomerase biochemistry and regulation. Cold Spring, NewYork, (CSH Laboratory Press), pp 35–68

    Google Scholar 

  • Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Brown SW (1970) The origin of male haploid genetic systems and their expected sex ratio. Theor Pop Biol 1:165–190

    Article  CAS  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose I. Jahrb Wiss Bot 69:762–818

    Google Scholar 

  • Heitz E (1929) Heterochromatin, chromocenter, chromomere. Ber Deutsch Bot Ges 47:274

    Google Scholar 

  • Heitz E (1933) Die Herkunft der chromocentren. Planta 18:571–636

    Article  Google Scholar 

  • Hick CA, Field LM, Devousluire AL (1996) Changes in the methylation of amplied Esterase DNA during loss and reselection of insecticide resistance in Peach-Potato aphids, Myzus Persicae. Insect Biochem Mol Biol 26:41–47

    Article  CAS  PubMed  Google Scholar 

  • Houk EJ, Griffiths GW (1980) Intracellular symbionts of the Homoptera. Annu Rev Entomol 25:161–187

    Article  CAS  Google Scholar 

  • Hughes-Schrader S (1935) The chromosome cycle of Phenacoccus (Coccidae). Biol Bull 69(3):62–468

    Article  Google Scholar 

  • Hughes-Schrader S (1944) A primitive coccid chromosome cycle in Puto sp. Biol Bull 87:167–176

    Article  Google Scholar 

  • Hughes-Schrader S (1948) Cytology of coccoids (Coccoidea: Homoptera). Adv Genet 2:127–203

    Article  Google Scholar 

  • Hughes-Schrader S, Ris H (1941) The diffuse spindle attachment of coccoids, verified by the mitotic behavior of induced chromosome fragments. J Exp Zool 87:29–456

    Article  Google Scholar 

  • Ishikawa H (1989) Biochemical and molecular aspects of endosymbionts in insects. Int Rev Cytol 116:1–45

    Article  CAS  PubMed  Google Scholar 

  • Jaipuriar SK, Teotia TPS, Lakhotia SC, Chauhan NS (1985) A reinvestigation of the lecanoid chromosome system in Kerria lacca (Kerr). Cytobios 42:263–270

    Google Scholar 

  • Jamaluddin M, Philip M, Chandra HS (1979) A rapid and gentle method for the salt extraction of Chromatin. J Biosci 1:49–59

    Article  CAS  Google Scholar 

  • James TC (1937) Sex ratios and the status of the male in Pseudococcinae (Hemiptera: Coccidae). Bul Entomol Res 28:429–461

    Article  Google Scholar 

  • James TC (1938) The effect of the humidity of the environment on sex ratios from over-aged ova of Pseudococcus citri (Risso) (Hemiptera: Coccidae). Proc R Entomol Soc Lond: Ser A Gen Entomol 13:73–79

    Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X-chromosome in female mammals is distinguished by a lack of histons H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289

    Article  CAS  PubMed  Google Scholar 

  • Kantheti P (1994) Studies on a female-specific cDNA clone and chromatin organization in a, Planococcus lilacinus. Ph.D thesis. IISc, Bangalore

    Google Scholar 

  • Kantheti P, Jayarama KS, Chandra HS (1996) Developmental analysis of a female-specific 16S rRNA gene from Mycetome associated endosymbionts of a mealybug, Planococcus lilacinus. Insect Biochem Mol Biol 26:997–1009

    Article  CAS  PubMed  Google Scholar 

  • Karnik PS (1983) Correlation between phosphorylated H 1 histone and condensed chromatin in Planococcus citri. FEBS 163(1):128–130

    Article  CAS  Google Scholar 

  • Khosla S, Kantheti P, Brahmachari V, Chandra HS (1996) A male-specific nuclease- resistant chromatin fraction in the Planococcus lilacinus. Chromosoma 104(5):386–392

    Article  CAS  PubMed  Google Scholar 

  • Khosla S, Augustus M, Brahmachari V (1999) Sex-specific organization of middle repetitive DNA sequences in the mealybug Planococcus lilacinus. Nucleic Acids Res 27(18):3745–3751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52

    Article  CAS  PubMed  Google Scholar 

  • Klein AS, Echardt RA (1976) The DNA’s of the A and B chromosomes of the Pseudococcus obscurus. Chromosoma 57:333–340

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Gullan PJ, Williams DJ (2008) Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Revista Corpoica – Ciencia y Tecnología Agropecuaria 9(2):55–61

    Google Scholar 

  • Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and trimethylated lysine 20 of histone H4 in animals. J Cell Sci 117:2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O’Caroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creatsa binding site for HP-1, proteins. Nature 410:116–120

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC (2004) Epigenetics of heterochromatin. J Biosci 29(3):219–224

    Article  CAS  PubMed  Google Scholar 

  • Li E (2002) Chromatin modifications and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ito M, Zhon F, Youngson N, Zuo X, Leder P, Ferguson Smith AC (2008) A maternal zygotic effect, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Little BA (1957) General and applied entomology, 3rd edn. Edition Harper and Row Publishers, New York, pp 165–173

    Google Scholar 

  • Lorick G (1970) Differential DNA synthesis in heterochromatic and euchromatic chromosome sets of Planococcus citri. Chromosoma 31:11–30

    Article  Google Scholar 

  • Lyon MF (1999) Imprinting and X-chromosome inactivation. Results Prob Cell Different 25:73–90

    Article  CAS  Google Scholar 

  • Mani MS (1989) Indian insects, 1st edn. Satish Book Enterprises, Agra, pp 103–105

    Google Scholar 

  • Mathur V, Mendiratta G, Ganapathi M, Kennady PK, Dwarkanath BS, Pande G, Brahmachari V (2010) An analysis of histone modifications in relation to sex-specific chromatin organization in the mealybug Maconellicoccus hirsutus. Cytogenet Genome Res 129(4):323–331

    Article  CAS  PubMed  Google Scholar 

  • Mckenzie HL (1967) Mealybugs of California with taxonomy, biology and control of North American species ( Homoptera: Coccoidea: Pseudococcidae). University of California Press, Berkeley/Los Angeles, p 525

    Google Scholar 

  • Miller DR, Kosztarab M (1979) Recent advances in the study of scale insects. Annu Rev Entomol 24:1–27

    Article  CAS  Google Scholar 

  • Mohan KN, Chandra HS (2005) Isolation and analysis of sequences showing sex-specific cytosine methylation in the Planococcus lilacinus. Mol Gen Genomics 274(6):557–568

    Article  CAS  Google Scholar 

  • Mohan KN, Ray P, Chandra HS (2002) Characterization of the Planococcus lilacinus, a model organism for studying the whole chromosome imprinting and inactivation. Genet Res 79(2):111–118

    Article  CAS  PubMed  Google Scholar 

  • Mohan KN, SandhyaRani B, Kulashrestha PS, Kadandale JS (2011) Characterisation of TTAGG telomeric repeats, their interstitial occurrence and constitutively active telomerase in the Planococcus lilacinus (Homoptera; Coccoidea). Chromosoma 120:165–175

    Article  CAS  PubMed  Google Scholar 

  • Mohan KN, Jun G, Kadandale JS (2012) Mealybug as a model for studying responses to high doses of ionizing radiation. Curr Topics Ionizing Rad Res 6:101–116

    Google Scholar 

  • Moharana S (1990) Cytotaxonomy of Coccoids (Coccidea: Homoptera). In: Sixth international symposium of scale insect studies, Part II, Cracow, Poland, August 6–12. Agricultural University Press, Cracow, pp 47–54

    Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran A, Vogtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid eubacterial endosymbionts in an ancestor of four aphid families. J Bacteriol 173:6321–6324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munson MA, Baumann P, Moran A (1992) Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on the 16s rRNA sequences. Mol. Phylogenetics and Evolution 1:26–30

    Article  CAS  Google Scholar 

  • Muramoto N (1980) A study of the C-banded chromosomes in some species of heteropteran insects. Proc Japan Acad Scien phys and BiolScien 56:126–130

    Google Scholar 

  • Nielsen SJ, Oulad-Abdelghani M, Oritz JA, Remboutsika E, Chambon P, Lesson R (2001) Heterochromatin formation in mammalian cells. Interactions between histones and HP1 proteins. Mol. Cell 7:729–731

    CAS  Google Scholar 

  • Nelson-Rees WA (1960) A study of sex predetermination in the mealybug Planococcus citri (Risso). J Exp Zool 144:111–137

    Article  CAS  PubMed  Google Scholar 

  • Nokayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  Google Scholar 

  • Nur U (1962a) A supernumerary chromosome with an accumulation mechanism in the lecanoid genetic system. Chromosoma 13:249–271

    Article  Google Scholar 

  • Nur U (1962b) Sperms, sperm bundles and fertilization in a mealybug, Pseudococcus obscurus Essig – (Homoptera: Coccoidea). J Morphol 111:173–199

    Article  Google Scholar 

  • Nur U (1963) Meiotic parthenogenesis and heterochromatization in a soft scale, Pulvinaria hydrangeae (Coccoidea: Homoptera). Chromosoma 14:123–139

    Article  Google Scholar 

  • Nur U (1966a) Harmful supernumerary chromosomes in a mealybug population. Genetics 54:1225–1238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nur U (1966b) The effect of supernumerary chromosomes on the development of mealybugs. Genetics 54:1239–1249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nur U (1966c) Non replication of heterochromatic chromosomes in a mealybug Planococcus citri (Coccoidea-Homoptera). Chromosoma 19:439–448

    Article  Google Scholar 

  • Nur U (1967) Reversal of heterochromatization and the activity of paternal chromosome set in male mealybug. Genetics 56:375–389

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nur U (1969) Harmful B-chromosome in a mealybug. Chromosoma 28:280–297

    Article  Google Scholar 

  • Nur U (1970) Translocations between euchromatic and heterochromatic chromosomes and spermatocytes lacking a heterochromatic set in male mealybugs. Chromosoma 29:42–61

    Article  CAS  PubMed  Google Scholar 

  • Nur U (1971) Parthenogenesis in Coccoids (Homoptera). Am Zool 11:301–308

    Article  Google Scholar 

  • Nur U (1972) Diploid arrhenotoky and automictic thelytoky in soft scale insects (Lecaniidae: Coccoidea: Homoptera). Chromosoma 39:381–401

    Article  Google Scholar 

  • Nur U (1977) Maternal inheritance of enzymes in the, Pseudococcus obscurus (Homoptera). Genetics 86:149–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nur U (1980) Evolution of unusual chromosome systems in scale insects (Coccoidea: Homoptera). In: Blackman RL, Hewitt GM, Ashburner M (eds) Insect cytogenetics. Royal Entomological Society, London, pp 97–117, 278

    Google Scholar 

  • Nur U (1990) Heterochromatization and euchromatization of whole genome in scale insects (Coccoidea: Homoptera). Development supplement:29–34

    Google Scholar 

  • Nur U, Brett BLH (1985) Genotypes suppressing meiotic drive of a B-chromosome in the mealybug Planococcus obscurus. Genetics 110:73–92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nur U, Brett BLH (1987) Control of meiotic drive of B-chromosomes in the mealybug, Planococcus affinis. Genetics 115:499–510

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nur U, Brett BLH (1988) Genotypes affecting the condensation and transmission of heterochromatic B-chromosomes in the mealybug, Planococcus affinis. Chromosoma 96:201–212

    Article  Google Scholar 

  • Nur U, Brown SW, Beardsley JW (1987) Evolution of chromosome number in mealybugs (Pseudococcidae: Homoptera). Genetica 74:53–60

    Article  Google Scholar 

  • Panzera F, Alvarez F, Sanchez-Rufas J, Pérez R, Suja JA, Scvortzoff E, Dujardin JP, Estramil E, Salvatella R (1992) C-heterochromatin polymorphism in holocentric chromosomes of Triatoma infestans (Hemiptera: Reduviidae). Genome 35(6):1068–1074

    Article  Google Scholar 

  • Papeschi AG (1998) C-banding and DNA content in these species of Belastoma (Heteroptera) with large differences in chromosome size and number. Genetica 76:43–51

    Article  Google Scholar 

  • Parida BB, Moharana S (1982) Studies on the chromosome constitution in 42 species of scale insects (Coccoidea: Homoptera) from India. Chromosome Information Service 32:18–20

    Google Scholar 

  • Pérez R, Panzera F, Page J, Suja JA, Rufas JS (1997) Meiotic behaviour of holocentric chromosomes: Orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosom Res 5:47–56

    Article  Google Scholar 

  • Peterson K, Sapienza C (1993) Imprinting the genome: imprinted genes, imprinting genes and an hypothesis for their interaction. Annu Rev Genet 27:7–31

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer GP, Riggs AD (1991) Chromatin differences between active and inactive X chromosomes revealed by genomic foot printing of permeabilized cells using DNase I and ligation mediated PCR. Genes Dev 5:1102–1113

    Article  CAS  PubMed  Google Scholar 

  • Prantera G, Bongiorni S (2012) chromosome cycle as a paradigm of epigenetics. Genetics Research International ID : 867390:1–11

    Article  CAS  Google Scholar 

  • Prantera G, Ferraro M (1990) Analysis of methylation and distribution of CpG sequence in human active and inactive X-chromosome by in situ nick translation. Chromosoma 99:18–23

    Article  CAS  PubMed  Google Scholar 

  • Raju NG (1994) A study of the chromosomes in three species of Indian. Dissertation, Bangalore University, Bangalore, Planococcus. M.Phil

    Google Scholar 

  • Ris H (1942) A cytological and experimental analysis of the meiotic behavior of the univalent X-chromosome in the bearberry aphid Tamalia (d'hyllaphis) Coweni (Ckll.). J Exptl Zool 90:267–326

    Article  Google Scholar 

  • Ross L, Pen I, Shuker DM (2010a) Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biol Rev 85(4):807–828

    PubMed  Google Scholar 

  • Ross L, Langenhof MBW, Pen I, Beukeboom LW, West SA, Shuker DM (2010b) Sex allocation in a species with paternal genome elimination: clarifying the role of crowding and female age in the mealybug Planococcus citri. Evol Ecol Res 12:89–104

    Google Scholar 

  • Ross L, Dealy EJ, Beukeboom LW, Shuker DM (2011) Temperature, age of mating and starvation determine the role of maternal effects on sex allocation in the mealybug Planococcus citri. Behav Ecol Sociobiol 65:909–919

    Article  PubMed Central  PubMed  Google Scholar 

  • Sado T, Hoki Y, Sasaki K (2005) Tsix silence xist through modification of chromatin structure. Dev Cell 9:159–165

    Article  CAS  PubMed  Google Scholar 

  • Scarbrough K, Hattman S, Nur U (1984) Relationship of DNA methylation level to the presence of heterochromatin in mealybugs. Mol Cell Biol 4:599–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schrader F (1921) The chromosomes of Pseudococcus nipae. Biol Bull 40:259–270

    Article  Google Scholar 

  • Schrader F (1923a) The origin of the mycetocytes in Pseudococcus. Biol Bull 45(6):279–302

    Article  Google Scholar 

  • Schrader F (1923b) A study of the chromosomes in three species of Pseudococcus. Archiv für Zellforschung 17:45–62

    Google Scholar 

  • Schrader F (1931) The chromosome cycle of Protortonia primitiva (Coccidae) and considerationof the meiotic division apparatus in the male. Z Wiss Zool 138:386–408

    Google Scholar 

  • Schrader F, Hughes-Schrader S (1926) Haploidy in Icerya purchasi. Z Wiss Zool 128:182–200

    Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromos Today 9:61–74

    Article  Google Scholar 

  • Shuker DM, Moynihan AM, Ross L (2009) Sexual conflict, sex allocation and the genetic system. Biol Lett 5:682–685

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh PB, Georgatos SD (2002) HP1: facts, open questions and speculation. J Struct Biol 140:10–16

    Article  CAS  PubMed  Google Scholar 

  • Singh PB, Miller JR, Pearce J, Kothary R, Burton RD, Paro R, James TC, Gaunt SJ (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res 19:789–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skiniotis G, Moazed D, Waitz T (2007) Acetylated histone tail peptides induce structural rearrangements in the RJC chromatin remodeling complex. J. Biol Chem 282:20804–20808

    Article  CAS  Google Scholar 

  • Solter D (1998) Imprinting. Intl J Dev Biol 42:951–954

    CAS  Google Scholar 

  • Spofford J (1976) In: Ashburmer & Novitski E (eds) Position effect variation in Drosophila. Academic Press, London, pp 955–1018

    Google Scholar 

  • Surani MAH (1991) Genomic imprinting: developmental significance and molecular mechanism. Curr Opin Genes Dev 1:241–246

    Google Scholar 

  • Tremblay E (1977) Advances in endosymbiotic studies in Coccoidea. Va. Polytech. Ins. State University. Res Div Bull 127:23–33

    Google Scholar 

  • Tremblay E (1989) Coccoidea endocytobiosis. In: Insect endocytobiosis: Morphology, physiology, genetics, evolution (eds.W. Schwemmler and G. Gassner). CRC Press, Boca Raton, Florida, pp 145–173

    Google Scholar 

  • Tremblay E, Caltagirone LE (1973) Fate of polar bodies in insects. Annu Rev Entomol 18:421–444

    Article  Google Scholar 

  • Tremblay E, Tranfaglia A, Rotundo G, Iccarino FM (1977) Osservazioni comparate su alcune specie di Pseudococcidi (Homoptera: Coccoidea). Bollettino del Laboratorio di Entomologia Agraria ‘Filippo Silvestri’. Portici 34:113–135

    Google Scholar 

  • Trivers RL, Hare H (1976) Haplo-diploidy and the evolution of the social insect. Science 191:249–263

    Article  CAS  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • Tulsyan GP (1963) Studies on chromosome number and spermatogenesis in the lac insect Laccifera lacca (Kerr). Curr Sci 32:374–375

    Google Scholar 

  • Vakoc CR, Mandst SA, Okachak BA, Blobel GA (2005) Histone H3 lysine methylation and HP-1gamma are associated with transcription elongation through mammalian chromate. Mol Cell 19:381–391

    Article  CAS  PubMed  Google Scholar 

  • Varndell NP, Godfray HCG (1996) Facultative adjustment of the sex-ratio in an insect (P. citri: Pseudococcidae) with paternal genome loss. Evolution 50(5):2100–2105

    Article  Google Scholar 

  • Venkatachalaiah G (1989) Characterization of heterochromatin in chromosomes of Planococcus citri. XIII All India Cell Biology Conference and Cell Biology Symposia. CCMB, Hyderabad

    Google Scholar 

  • Venkatachalaiah G, Chowdaiah BN (1987) Air-drying technique for the preparation of mosquito chromosomes. Nucleus 30(1, 2): 44–46

    Google Scholar 

  • Vitkova M, Karl J, Traut W, Zrzavy J, Marec F (2005) The evolutionary origin of insect telomeric repeats (TTAGG)n. Chromosomal Res 13:145–156

    Article  CAS  Google Scholar 

  • Volpi S, Bongiorni S, Prantera G (2007) HP2-like protein: a new piece of the facultative heterochromatin puzzle. Chromosoma 116(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge University Press, Cambridge, p 961

    Google Scholar 

  • White MJD (1978) Modes of speciation. W. H. Freeman, San Francisco

    Google Scholar 

  • Wu RS, Penuaz HT, Hatch CI, Bonner WM (1986) Histones and their modifications. CRC Crit Ren Biochrem 20:201–263

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Sompalaym .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sompalaym, R., Lingarajaiah, K.A., Narayanappa, R.G., Jayaprakash, Govindaiah, V. (2016). Cytogenetics. In: Mani, M., Shivaraju, C. (eds) Mealybugs and their Management in Agricultural and Horticultural crops . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2677-2_3

Download citation

Publish with us

Policies and ethics