Advertisement

Aperiodic Silicon Nanowire Arrays: Fabrication, Light Trapping Properties and Solar Cell Applications

  • Sanjay K. SrivastavaEmail author
  • C. M. S. Rauthan
  • Vikram Kumar
  • P. K. Singh
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)

Abstract

Solar photovoltaic (SPV) is capable of providing the most feasible carbon-free route to the worldwide traditional power consumption. During the last decade, there has been tremendous development in silicon wafer based photovoltaic (PV) cells technology and today commercial silicon PV cells over 20 % efficiencies have been achieved. However, large-scale implementation of silicon wafer PV is currently not economical because of their high cost as compared to traditional power sources. One of the primary cost components for silicon PV cells is the starting silicon wafer, which requires extensive purification to maintain reasonable performance. Therefore, development of efficient and low cost PV devices is extremely important. Silicon nanowires (SiNWs) are a very promising candidate for next generation PV. The SiNW arrays exhibit low reflection, strong broadband light absorption and may be used as antireflection surface in solar cells. In addition to enhanced optical properties, nanowire arrays also have the potential for efficient charge carrier collection across the nanowire diameter for radial junction (homo/hetro p-n junctions) solar cells and therefore may relax high quality material requirement, enabling lower-cost PV cells. In the chapter, a short review of aperiodic SiNW arrays fabrication by silver assisted wet chemical etching method, their light trapping properties and PV applications with emphasis on SiNW arrays based solar cells would be presented. Finally, challenges in effective use of SiNW arrays in PV devices and future perspective would also be briefly discussed.

Keywords

Metal assisted chemical etching Silicon nanowires Light trapping Antireflection Solar cell Thin solar cell 

Notes

Acknowledgments

Authors would like to thank the Council of Scientific & Industrial Research (CSIR), India for financial support under CSIR-TAPSUN programme (project code NWP-55) and Supra Institutional Project (SIP-17). Financial supports under CSIR YSA Research project (Grant code: OLP 142732; P-81-113) from CSIR and the BOYSCAST fellowship (Award No. SR/BY/P-03/10) from the Department of Science and Technology (DST), Government of India, are also acknowledged.

References

  1. 1.
    M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, H. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239 (2010)CrossRefGoogle Scholar
  2. 2.
    E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Tsakalakos, J. Balch, J. Fronheiser, M. Shih, S. LaBoeuf, M. Pietrzykowski, P. Codella, B. Korevaar, O. Sulima, J. Rand, A. Davuluru, U. Ropol, Strong broadband absorption in silicon nanowire arrays with a large lattice constant for photovoltaic applications. J. Nanophoton. 1, 013552 (2007)CrossRefGoogle Scholar
  4. 4.
    B. Tian, X. Zheng, T. Kempa, Y. Fang, J. Huang, C. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007)CrossRefGoogle Scholar
  5. 5.
    E. Garnett, P. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Kayes, H. Atwater, N. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 7, 114302 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Putnam, S. Boettcher, M. Kelzenberg, D. Turner-Evans, J. Spurgeon, E. Warren, R. Briggs, N. Lewis, H. Atwater, Si microwire-array solar cells. Energy Environ. Sci. 3, 1037 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Kenrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, J. Redwing, Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 97, 143108 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Peng, S. Lee, Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 20, 1 (2010)Google Scholar
  11. 11.
    O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, High performance wire-array silicon solar cells. Prog. Photovolt. Res. Appl. 10, 1002 (2010)Google Scholar
  12. 12.
    J. Zhu, Z. Yu, G. Burkhard, C. Hsu, S. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Lin, M. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Nano Lett. 7, 3249 (2007)CrossRefGoogle Scholar
  14. 14.
    B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Silicon nanowire–poly(3, 4ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells. Appl. Phys. Lett. 99, 113510 (2011)CrossRefGoogle Scholar
  15. 15.
    E.A. Dalchiele, F. Martín, D. Leinen, R.E. Marotti, J.R. Ramos Barrado, Single crystalline silicon nanowire array based photoelectrochemical cells. J. Electrochem. Soc. 156, K77 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)CrossRefGoogle Scholar
  17. 17.
    V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549 (2009)CrossRefGoogle Scholar
  18. 18.
    R.S. Wagner, W.C. Ellis, Vapor liquid solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  19. 19.
    J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold silane vapor liquid solid reaction. J. Vac. Sci. Technol. B 15, 554 (1997)CrossRefGoogle Scholar
  20. 20.
    R.L. Latu, C. Mouchet, C. Cayron, E. Rouviere, J.P. Simonato, Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. J. Nanopart. Res. 10, 1287 (2008)CrossRefGoogle Scholar
  21. 21.
    B. Fuhrmann, H.S. Leipner, H.R. Höche, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5, 2524 (2005)CrossRefGoogle Scholar
  22. 22.
    A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998)CrossRefGoogle Scholar
  23. 23.
    Y.H. Yang, S.J. Wu, S.H. Chiu, P. Lin, Y.T. Chen, Catalytic growth of silicon nanowires assisted by laser ablation. J. Phy. Chem. B 108, 846 (2004)CrossRefGoogle Scholar
  24. 24.
    H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng, J. Lin, Growth of Si nanowires by thermal evaporation. Nanotechnology 16, 417 (2005)CrossRefGoogle Scholar
  25. 25.
    S.K. Srivastava, P.K. Singh, V.N. Singh, K.N. Sood, D. Haranath, V. Kumar, Large-scale synthesis, characterization and photoluminescence properties of amorphous silica nanowires by thermal evaporation of silicon monoxide. Physica E 41, 1545 (2009)CrossRefGoogle Scholar
  26. 26.
    S.D. Hutagalung, K.A. Yaacob, A.F.A. Aziz, Oxide assisted growth of silicon nanowires by carbothermal evaporation. Appl. Surf. Sci. 254, 633 (2007)CrossRefGoogle Scholar
  27. 27.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 (2000)CrossRefGoogle Scholar
  28. 28.
    J. Mart, R. Garcia, Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21, 245301 (2010)CrossRefGoogle Scholar
  29. 29.
    Y.Q. Fu, A. Colli, A. Fasoli, J.K. Luo, A.J. Flewitt, A.C. Ferrari, W.I. Milne, Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B 27, 1520 (2009)CrossRefGoogle Scholar
  30. 30.
    K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembly nanoelectrochemistry. Adv. Matter. 14, 1164 (2002)CrossRefGoogle Scholar
  31. 31.
    K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Dendrite assisted growth of silicon nanowires in electroless metal deposition. Adv. Funct. Mater. 13, 127 (2003)CrossRefGoogle Scholar
  32. 32.
    T. Qiu, X.L. Wu, G.G. Siu, P.K. Chu, Intergrowth mechanism of silicon nanowires and silver dendrites. J. Electron. Mater. 35, 1879 (2006)CrossRefGoogle Scholar
  33. 33.
    D. Kumar, S.K. Srivastava, P.K. Singh, K.N. Sood, V.N. Singh, N. Dilawar, M. Husain, Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. J. Nanopart. Res. 12, 2267 (2010)CrossRefGoogle Scholar
  34. 34.
    K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, S.-T. Lee, Ordered silicon nanowire arrays via nanosphere lithography and metal induced etching. Appl. Phys. Lett. 90, 163123 (2007)CrossRefGoogle Scholar
  35. 35.
    Z. Huang, N. Geyer, P. Werner, J.D. Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285 (2011)CrossRefGoogle Scholar
  36. 36.
    K. Peng, J. Zhu, Simultaneous gold deposition and formation of silicon nanowire arrays. J. Electroanal. Chem. 558, 35 (2003)CrossRefGoogle Scholar
  37. 37.
    K. Peng, J. Zhu, Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim. Acta 49, 2563 (2004)CrossRefGoogle Scholar
  38. 38.
    K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, Uniform axial orientation alignment of one dimensional single crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 44, 2737 (2005)CrossRefGoogle Scholar
  39. 39.
    K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 16, 387 (2006)CrossRefGoogle Scholar
  40. 40.
    H. Fang, Y. Wu, J. Zhao, J. Zhu, Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17, 3768 (2006)CrossRefGoogle Scholar
  41. 41.
    K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S.T. Lee, Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem. Eur. J. 12, 7942 (2006)CrossRefGoogle Scholar
  42. 42.
    T. Qui, X.L. Wu, Y.F. Mei, G.J. Wan, P.K. Chu, G.G. Siu, From Si nanotubes to nanowires: synthesis, characterization, and self-assembly. J. Cryst. Growth 277, 143 (2005)CrossRefGoogle Scholar
  43. 43.
    S.K. Srivastava, D. Kumar, S.W. Schmitt, K.N. Sood, S.H. Christiansen, P.K. Singh, Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics. Nanotechnology 25, 175601 (2014)CrossRefGoogle Scholar
  44. 44.
    X. Li, P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 77, 2572 (2000)CrossRefGoogle Scholar
  45. 45.
    S.K. Gandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd edn. (Willey, India, 2009), p. 195Google Scholar
  46. 46.
    W.M. Bullis, Properties of gold in silicon. Solid State Electron. 9, 143 (1996)CrossRefGoogle Scholar
  47. 47.
    C. del Cañizo, I. Tobías, R. Lago-Aurrekoetxea, A. Luque, Influence of depth-inhomogeneity of lifetime in silicon solar cells. J. Electrochem. Soc. 149, G522 (2002)CrossRefGoogle Scholar
  48. 48.
    M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 112, 4444 (2008)CrossRefGoogle Scholar
  49. 49.
    Z.P. Huang, T. Shimizu, S. Senz, Z. Zhang, X.X. Zhang, W. Lee, N. Geyer, U. Gosele, Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett. 9, 2519 (2009)CrossRefGoogle Scholar
  50. 50.
    V.A. Sivakov, G. Brönstrup, B. Pecz, A. Berger, G.Z. Radnoczi, M. Krause, S.H. Christiansen, Realization of vertical and zigzag single crystalline silicon nanowire architectures. J. Phys. Chem. C 114, 3798 (2010)CrossRefGoogle Scholar
  51. 51.
    W. Wang, D. Li, M. Tian, Y.-C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649 (2012)CrossRefGoogle Scholar
  52. 52.
    H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin, J.-H. He, Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ. Sci. 4, 2863 (2011)CrossRefGoogle Scholar
  53. 53.
    B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22, 155606 (2011)CrossRefGoogle Scholar
  54. 54.
    B.S. Kim, S. Shin, S.J. Shin, K.M. Kim, H.H. Cho, Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings. Langmuir 27, 10148 (2011)CrossRefGoogle Scholar
  55. 55.
    S.L. Cheng, C.H. Chung, H.C. Lee, A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates. J. Electrochem. Soc. 155, D711 (2008)CrossRefGoogle Scholar
  56. 56.
    J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotech. 3, 168 (2008)CrossRefGoogle Scholar
  57. 57.
    O. Gunawan, S. Guha, Characteristicsofvapor–liquid–solid grown silicon nanowire solar cells. Sol. Energy Mater. Sol. Cells 93, 1388 (2009)CrossRefGoogle Scholar
  58. 58.
    C.Y. Chen, C.S. Wu, C.J. Chou, T.J. Yen, Morphological control of single crystalline silicon nanowire arrays near room temperature. Adv. Mater. 20, 3811 (2008)CrossRefGoogle Scholar
  59. 59.
    M.A. Green, Silicon Solar Cells: Advanced Principles and Practice (Bridge Printery, Sydney, 1995)Google Scholar
  60. 60.
    P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, Effectiveness of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103 (2001)CrossRefGoogle Scholar
  61. 61.
    J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991 (1998)CrossRefGoogle Scholar
  62. 62.
    S. Wang, X.Z. Yu, H.T. Fan, Simple lithographic approach for subwavelength structure antireflection. Appl. Phys. Lett. 91, 061105 (2007)CrossRefGoogle Scholar
  63. 63.
    M.E. Motamedi, W.H. Southwell, W.J. Gunning, Antireflection surfaces in silicon using binary optics technology, reflection properties of nanostructure-arrayed silicon surfaces. Appl. Opt. 31, 4371 (1992)CrossRefGoogle Scholar
  64. 64.
    K. Hadobas, S. Kirsch, A. Carl, M. Acet, E.F. Wassermann, Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 11, 161 (2000)CrossRefGoogle Scholar
  65. 65.
    C.H. Sun, W.L. Min, N.C. Linn, P. Jiang, Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl. Phys. Lett. 91, 231105 (2007)CrossRefGoogle Scholar
  66. 66.
    Z.N. Yu, H. Gao, W. Wu, H.X. Ge, S.Y. Chou, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and lift-off. J. Vac. Sci. Technol. B 21, 2874 (2003)CrossRefGoogle Scholar
  67. 67.
    G. Zhang, J. Zhang, G.Y. Xie, Z.F. Liu, H.B. Shao, Cicada wings: a stamp from nature for nanoimprint lithography. Small 2, 1440 (2006)CrossRefGoogle Scholar
  68. 68.
    Y. Kanamori, E. Roy, Y. Chen, Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 7879, 287 (2005)CrossRefGoogle Scholar
  69. 69.
    P. Lalanne, G.M. Morris, Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8, 53 (1997)CrossRefGoogle Scholar
  70. 70.
    K.Q. Peng, Y. Xu, Y. Yu, Y.J. You, S.T. Lee, J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic application. Small 1, 1062 (2005)CrossRefGoogle Scholar
  71. 71.
    S.K. Srivastava, D. Kumar, P.K. Singh, V. Kumar, Silicon nanowire arrays based “black silicon” solar cells, in Proceeding of 34th IEEE Photovoltaic Specialists Conference, Philadelphia, USA, pp. 1851–1856 (2009)Google Scholar
  72. 72.
    S.K. Srivastava, D. Kumar, P.K. Singh, M. Kar, V. Kumar, M. Husain, Excellent antireflection properties of vertical silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 94, 1506 (2010)CrossRefGoogle Scholar
  73. 73.
    Y. Kato, S. Adachi, Synthesis of Si nanowire arrays in AgO/HF solution and their optical and wettability properties. J. Electrochem. Soc. 158, K157 (2011)CrossRefGoogle Scholar
  74. 74.
    R.-C. Wang, C.-Y. Chao, W.-S. Su, Electrochemically controlled fabrication of lightly doped porous Si nanowire arrays with excellent antireflective and self-cleaning properties. Acta Mater. 60, 2097 (2012)CrossRefGoogle Scholar
  75. 75.
    C.-Y. Chen, W.-J. Li, H.-H. Chen, Tailoring broadband antireflection on a silicon surface through two-step silver-assisted chemical etching. ChemPhysChem 13, 1415 (2012)CrossRefGoogle Scholar
  76. 76.
    N. Nafie, M.A. Lachiheb, M. Bouaicha, Effect of etching time on morphological, optical, and electronic properties of silicon nanowires. Nanoscale Res. Lett. 7, 393 (2012)CrossRefGoogle Scholar
  77. 77.
    A. Yamaguchi, T. Shimizu, Y. Morosawa, K. Takase, T.-L. Chen, S.-M. Lu, H.-C. Chien, S. Shingubara, Morphology dependence of optical reflectance properties for a high-density array of silicon nanowires. Jpn. J. Appl. Phys. 53, 06JF10 (2014)Google Scholar
  78. 78.
    M.A. Lachiheb, M.A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, M. Bouaïcha, Investigation of the effectiveness of SiNWs used as an antireflective layer in solar cells. Sol. Energy 110, 673 (2014)CrossRefGoogle Scholar
  79. 79.
    Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, G. Ji, Improved antireflection properties and optimized structure for passivation of well-separated, vertical silicon nanowire arrays for solar cell applications. Sol. Energy Mater. Sol. Cells 125, 248 (2014)CrossRefGoogle Scholar
  80. 80.
    Y.-J. Hung, S.-L. Lee, K.-C. Wu, Y. Tai, Y.-T. Pan, Antireflective silicon surface with vertical aligned silicon nanowires realized by simple wet chemical etching processes. Opt. Express 19, 15792 (2011)CrossRefGoogle Scholar
  81. 81.
    Y.-J. Hung, K.-C. Wu, S.-L. Lee, Y.-T. Pan, Realization and characterization of aligned silicon nanowire array with thin silver film. IEEE Photon. J. 3, 617 (2011)CrossRefGoogle Scholar
  82. 82.
    T.-H. Pei, S. Thiyagu, Z. Pei, Ultra high-density silicon nanowires for extremely low reflection in visible regime. Appl. Phys. Lett. 99, 153108 (2011)CrossRefGoogle Scholar
  83. 83.
    J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, J.-H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires. Opt. Express 18, A286 (2010)CrossRefGoogle Scholar
  84. 84.
    Y. Kanamori, M. Sasaki, K. Hane, Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 24, 1422 (1999)CrossRefGoogle Scholar
  85. 85.
    H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, H. Yugami, Antireflective sub-wavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks. Appl. Phys. Lett. 88, 201116 (2006)CrossRefGoogle Scholar
  86. 86.
    C.C. Striemer, P.M. Fauchet, Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett. 81, 2980 (2002)CrossRefGoogle Scholar
  87. 87.
    S. Koynov, M.S. Brandt, M. Srutzmann, Black non-reflecting silicon surfaces for solar cells. Appl. Phys. Lett. 88, 203107 (2007)CrossRefGoogle Scholar
  88. 88.
    M.L. Kuo, D.J. Poxon, Y.S. Kim, F.W. Mont, J.K. Kim, E.F. Schubert, S.Y. Lin, Realization of a near-perfect antireflection coating for silicon solar energy utilization. Opt. Lett. 33, 2527 (2008)CrossRefGoogle Scholar
  89. 89.
    L. Tian, K.B. Ram, I. Ahmad, L. Menon, M. Holtz, Optical properties of Si nanopore arrays. J. Appl. Phys. 97, 026101 (2005)CrossRefGoogle Scholar
  90. 90.
    L.L. Ma, Y.C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X.M. Ding, X.Y. Hou, Wide-band “black silicon” based on porous silicon. Appl. Phys. Lett. 88, 171907 (2006)CrossRefGoogle Scholar
  91. 91.
    J.S. Li, H.Y. Yu, S.M. Wong, G. Zhang, X.W. Sun, P.G.Q. Lo, D.L. Kwong, Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl. Phys. Lett. 95, 033102 (2009)CrossRefGoogle Scholar
  92. 92.
    C.X. Lin, M.L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express 17, 19371 (2009)CrossRefGoogle Scholar
  93. 93.
    R.A. Street, W.S. Wong, C. Paulson, Analytic model for diffuse reflectivity of silicon nanowire mats. Nano Lett. 9, 3494 (2009)CrossRefGoogle Scholar
  94. 94.
    H. Bao, X. Ruan, Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt. Lett. 35, 3378 (2010)CrossRefGoogle Scholar
  95. 95.
    W.Q. Xie, J.I. Oh, W.Z. Shen, Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays. Nanotechnology 22, 065704 (2011)CrossRefGoogle Scholar
  96. 96.
    J. Nelson, Physics of Solar Cells (Imperial College Press, London, 2003)CrossRefGoogle Scholar
  97. 97.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovolt. Res. Appl. 19, 84 (2011)CrossRefGoogle Scholar
  98. 98.
    C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, J.M. Fthenakis, E.S. Aydil, Photovoltaic manufacturing: present status and future prospects. J. Vac. Sci. Technol. A 29, 030801 (2011)CrossRefGoogle Scholar
  99. 99.
    M.D. Kelzenberg, M.A. Filler, B.M. Kayes, M.C. Putnam, D.B. Turner-Evans, N.S. Lewis, H.A. Atwater, Single-nanowire Si solar cells, in Proceeding of 33rd IEEE Photovoltaic Specialists Conference, pp. 1–6 (2008)Google Scholar
  100. 100.
    M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W. Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics. Energy Environ. Sci. 4, 866 (2011)CrossRefGoogle Scholar
  101. 101.
    H. Fang, L. Xudong, S. Shuang, X. Ying, Z. Jing, Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19, 255703 (2008)CrossRefGoogle Scholar
  102. 102.
    D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Fabrication of silicon nanowire arrays based solar cell with improved performance. Sol. Energy Mater. Sol. Cells 95, 215 (2011)CrossRefGoogle Scholar
  103. 103.
    H.-D. Um, K.-T. Park, J.-Y. Jung, X. Li, K. Zhou, S.W. Jee, J.-H. Lee, Incorporation of a self-aligned selective emitter to realize highly efficient (12.8 %) Si nanowire solar cells. Nanoscale 6, 5193 (2014)CrossRefGoogle Scholar
  104. 104.
    C. Chen, R. Jia, H. Li, Y. Meng, X. Liu, T. Ye, S. Kasai, H. Tamotsu, N. Wu, S. Wang, J. Chu, Electrode-contact enhancement in silicon nanowire-array-textured solar cells. Appl. Phys. Lett. 98, 143108 (2011)CrossRefGoogle Scholar
  105. 105.
    H.F. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, T. Ye, Influence of nanowires length on performance of crystalline silicon solar cell. Appl. Phys. Lett. 98, 151116 (2011)CrossRefGoogle Scholar
  106. 106.
    J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, M.S. Hyun, J.M. Yang, J.-H. Lee, A wafer-scale Si wire solar cell using radial and bulk p-n junctions. Nanotechnology 21, 445303 (2010)CrossRefGoogle Scholar
  107. 107.
    C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, S. Wang, Silicon nanowire-array-textured solar cells for photovoltaic application. J. Appl. Phys. 108, 094318 (2010)CrossRefGoogle Scholar
  108. 108.
    S.H. Baek, H.S. Jang, J.H. Kim, Characterization of optical absorption and photovoltaic properties of silicon wire solar cells with different aspect ratio. Current Appl. Phys. 11, S30 (2011)CrossRefGoogle Scholar
  109. 109.
    C. Chen, R. Jia, H.H. Yue, H.F. Li, X.Y. Liu, T.C. Ye, K. Seiya, T. Hashizume, S.L. Wang, J.H. Chu, B.S. Xu, Silicon nanostructure solar cells with excellent photon harvesting. J. Vac. Sci. Technol. B 29, 021014 (2011)CrossRefGoogle Scholar
  110. 110.
    B.-R. Huang, Y.-K. Yang, T.-C. Lin, W.-L. Yang, A simple and low-cost technique for silicon nanowire arrays based solar cells. Sol. Energy Mater. Sol. Cells 98, 357 (2012)CrossRefGoogle Scholar
  111. 111.
    M. Kulakci, F. Es, B. Ozdemir, H.E. Unalan, R. Turan, Application of Si nanowires fabricated by metal-assisted etching to crystalline Si solar cells. IEEE J. Photovoltaics 3, 548 (2013)CrossRefGoogle Scholar
  112. 112.
    X.X. Lin, X. Hua, Z.G. Huang, Z. Shen, Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology 24, 235402 (2013)CrossRefGoogle Scholar
  113. 113.
    Z. Zhao, B. Zhang, P. Li, W. Guo, A. Liu, Effective passivation of large area black silicon solar cells by SiO2/SiNx:H stacks. Int. J. Photoenergy 2014, 6 pp, Article ID 683654 (2014). http://dx.doi.org/10.1155/2014/683654
  114. 114.
    W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.C. Hsu, M.-J. Chen, Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. ACS Appl. Mater. Interfaces 5, 9752 (2013)CrossRefGoogle Scholar
  115. 115.
    J. Oh, H.-C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotech. 7, 743 (2012)CrossRefGoogle Scholar
  116. 116.
    G. Jia, M. Steglich, I. Sil, F. Falk, Core-shell heterojunction solar cells on silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 96, 226 (2012)CrossRefGoogle Scholar
  117. 117.
    G. Jia, A. Gwalik, J. Bergmann, B. Eisenhawer, S. Schonherr, G. Andra, F. Falk, Silicon nanowire solar cells with radial p-n heterojunction on crystalline silicon thin films: light trapping properties. IEEE J. Photovoltaics 4, 28 (2014)CrossRefGoogle Scholar
  118. 118.
    G. Jia, G. Andrä, A. Gawlik, S. Schönherr, J. Plentz, B. Eisenhawer, T. Pliewischkies, A. Dellith, F. Falk, Nanotechnology enhanced solar cells prepared on laser-crystallized polycrystalline thin films (<10 µm). Sol. Energy Mater. Sol. Cells 126, 62 (2014)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Sanjay K. Srivastava
    • 1
    Email author
  • C. M. S. Rauthan
    • 1
  • Vikram Kumar
    • 2
  • P. K. Singh
    • 1
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations