Advertisement

Introduction to Nanomaterials

  • Zishan H. KhanEmail author
  • Avshish Kumar
  • Samina Husain
  • M. Husain
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)

Abstract

The applications of nanomaterials have been enormous, which not only encompasses a single discipline but it stretches across the whole spectrum of science right from agricultural science to space technology. New approaches to synthesize nanomaterials in order to design new devices and processes are being developed and the techniques of fabrication of nanomaterials involve analyzing and controlling the matter at atomic scales. This fascinating research field has started a new era of integration of basic research and advanced technology at the atomic scale which has a potential to bring the technological innovations at highest level. The rudimentary capabilities of nanomaterials today are envisioned to evolve in our overlapping generations of nanotechnology products: passive nanostructures, active nanostructures, systems of nanosystems, and molecular nanosystems. This chapter presents the basic introduction to nanomaterials and their popular applications.

Keywords

Nanomaterials Fullerene Carbon nanotubes Graphene Nanodiamond ZnO nanostructures 

References

  1. 1.
    A.S. Edelstein, R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications (Institute of Physics Publishing, Bristol, 1998)Google Scholar
  2. 2.
    K.E. Geckeler, E. Rosenberg (eds.), Functional Nanomaterials (American Scientific Publishers, Valencia, 2006), p. 488Google Scholar
  3. 3.
    B. Bhushan, Handbook of Nanotechnology (Springer, Berlin, 2004)Google Scholar
  4. 4.
    M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse, Nanotechnology: Basic Science and Emerging Technologies (CRC Press, Boca Raton, 2002)Google Scholar
  5. 5.
    R. Valiev, Materials science: nanomaterial advantage. Nature 419(6910), 887–889 (2002)CrossRefGoogle Scholar
  6. 6.
    W.G. Kreyling, M. Semmler-Behnke, Q. Chaudhry, A complementary definition of nanomaterial. Nano Today 5(3), 165–168 (2010)CrossRefGoogle Scholar
  7. 7.
    N.C. Seeman, DNA in a material world. Nature 421, 427 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Taubes, Double helix does chemistry at a distance—but how? Science 275, 1420 (1997)CrossRefGoogle Scholar
  9. 9.
    A. Okamoto, K. Tanaka, I. Saito, Rational design of a DNA wire possessing an extremely high hole transport ability. J. Am. Chem. Soc. 125, 5066 (2003)CrossRefGoogle Scholar
  10. 10.
    J.R. Peralta-Videa, L. Zhao, M.L. Lopez-Moreno, G. de la Rosa, J. Hong, J.L. Gardea-Torresdey, Nanomaterials and the environment: a review for the biennium 2008–2010. J. Hazard. Mater. 186(1), 1–15 (2011)CrossRefGoogle Scholar
  11. 11.
    B.A. Magnuson, T.S. Jonaitis, J.W. Card, A brief review of the occurrence use, and safety of food related nanomaterials. J. Food Sci. 76(6), R126–R133 (2011)CrossRefGoogle Scholar
  12. 12.
    R.P. Adams, Nanotechnology: understanding small system (CRC Press, Taylor and Francis Group, Boca Raton, 2007)Google Scholar
  13. 13.
    M.S. Rajan, Nano: The Next Revolution (National Book Trust, New Delhi, 2005)Google Scholar
  14. 14.
    M.J. O’Connell, Carbon Nanotubes: Properties and Applications (CRS Taylor and Francis, Boca Raton, 2006)Google Scholar
  15. 15.
    M.A. Ratner, D. Ratner, Nanotechnology: A Gentle Introduction to the Next Big Idea, Technology and Engineering (Prentice Hall, Upper Saddle River, 2003)Google Scholar
  16. 16.
    Samori, Bruno. Plenty of Room for Biology at the Bottom. An Introduction to Bionanotechnology. By Ehud Gazit. 236–237 (2008)Google Scholar
  17. 17.
    J.L. de la Fuente, G. Mosquera, R. París, High performance HTPB-based energetic nanomaterial with CuO nanoparticles. J. Nanosci. Nanotechnol. 9(12), 1–7 (2009). 685Google Scholar
  18. 18.
    B.K. Teo, X.H. Sun, Classification and representations of low-dimensional nanomaterials: terms and symbols. J. Cluster Sci. 18(2), 346–357 (2007)CrossRefGoogle Scholar
  19. 19.
    A.N. Guz, Y.Y. Rushchitskii, Nanomaterials: on the mechanics of nanomaterials. Int. Appl. Mech. 39(11), 1271–1293 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T. Tervonen, I. Linkov, J.R. Figueira, J. Steevens, M. Chappell, M. Merad, Risk-based classification system of nanomaterials. J. Nanopart. Res. 11(4), 757–766 (2009)CrossRefGoogle Scholar
  21. 21.
    V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27(5), 990–993 (2007)CrossRefGoogle Scholar
  22. 22.
    L.M. Liz-Marzan, P. Mulvaney, The assembly of coated nanocrystals. J. Phys. Chem. B 107, 7312 (2003)CrossRefGoogle Scholar
  23. 23.
    X.H. Sun, N.B. Wong, C.P. Li, S.T. Lee, T.K. Sham, Chainlike silicon nanowires: morphology, electronic structure and luminescence studies. J. Appl. Phys. 96, 3447 (2004)CrossRefGoogle Scholar
  24. 24.
    X.H. Sun, C.P. Li, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, Templating effect of hydrogen-passivated silicon nanowires in the production of hydrocarbon nanotubes and nanoonions via sonochemical reactions with common organic solvents under ambient conditions. J. Am. Chem. Soc. 124, 14856 (2002)CrossRefGoogle Scholar
  25. 25.
    A.I. Hochbaum, R. Fan, R.R. He, P.D. Yang, Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457 (2005)CrossRefGoogle Scholar
  26. 26.
    Z. Zhong, F.X. Chen, A.S. Subramanian, J.Y. Lin, J. Highfield, A. Gedanken, Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure. J. Mater. Chem. 6, 489 (2006)CrossRefGoogle Scholar
  27. 27.
    V. Svrcek, C. Pham-Huu, M.J. Ledoux, F. Le Norman, O. Ersen, S. Joulie, Filling of single silicon nanocrystals within multi-walled carbon nanotubes. Appl. Phys. Lett. 88, 033112 (2006)CrossRefGoogle Scholar
  28. 29.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701 (1996)CrossRefGoogle Scholar
  29. 30.
    B.K. Teo, H.X. Sun, Silicon-based low-dimensional nanomaterials and nanodevices. Chem. Rev. 107, 1454 (2007)CrossRefGoogle Scholar
  30. 31.
    A.N. Khlobystov, K. Porfyrakis, M. Kanai, D.A. Britz, A. Ardavan, H. Shinohara, T.J.S. Dennis, G.A.D. Briggs, Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew. Chem. Int. Ed. 43, 1386 (2004)CrossRefGoogle Scholar
  31. 32.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot. Nature 318, 162 (1985)CrossRefGoogle Scholar
  32. 33.
    W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, C60: a new form of carbon. Nature 347, 354 (1990)Google Scholar
  33. 34.
    R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, F.A. Thiel, Conducting films of C60 and C70 by alkali-metal doping. Nature 350, 320 (1991)Google Scholar
  34. 35.
    M. Shahid Khan, Figures Simulated (Department of Physics, Jamia Millia Islamia, New Delhi, India) (2015) Google Scholar
  35. 36.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  36. 37.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)CrossRefGoogle Scholar
  37. 38.
    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993)CrossRefGoogle Scholar
  38. 39.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. deHeer, Carbon nanotube quantum resistors. Science 280, 1744 (1998)CrossRefGoogle Scholar
  39. 40.
    M.K. Rai, S. Sarkar, Carbon nanotube as VLSI interconnect, in Electronic Properties of Carbon Nanotubes, ed. by J.M. Marulanda (Intech, Rijeka, Croatia, 2011)Google Scholar
  40. 41.
    A. Kumar, S. Parveen, S. Husain, J. Ali, M. Zulfequar, Harsh, M. Husain, Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system. J. Appl. Phys. 115, 084308 (2014) Google Scholar
  41. 42.
    A. Kumar, S. Husain, J. Ali, M. Husain, Harsh, M. Husain, Field emission study of carbon nanotubes forest and array grown on Si using Fe as catalyst deposited by electro-chemical method. J. Nanosci. Nanotech. 12(3), 2829 (2012)CrossRefGoogle Scholar
  42. 43.
    Z.H. Khan, M. Husain, Carbon nanotube and its possible applications. Indian J. Mat. Sci. Eng. 12, 529–551 (CSIR, New Delhi)Google Scholar
  43. 44.
    Z.H. Khan, S. Khan, M. Husain, Variable range hopping in carbon nanotubes. Curr. Nanosci. 6, 1–16 (2010)Google Scholar
  44. 45.
    Z.H. Khan, N. Salah, S.S. Habib, A. Azam, M.S. Al-Shahawi, Multi-walled carbon nanotubes film sensor for carbon mono-oxide gas. Curr. Nanosci. 8, 274 (2012)CrossRefGoogle Scholar
  45. 46.
    Z.H. Khan, N. Salah, S.S. Habib, M.S. Ansari, M.S. Al-Shahawi, Cobalt catalyzed multi-walled carbon nanotubes film sensor for carbon mono-oxide gas. Dig. J. Nanomater. Biostruct. 6(4), 1947 (2011)Google Scholar
  46. 47.
    A.F. Hollemann, E. Wiberg, Lehrbuch der Anorganischen Chemei (Walter de Gruyter, Berlin, 1985), p. 701Google Scholar
  47. 48.
    Y. Lifshitz, DLC-present status. Diamond Relat. Mater. 35, 388 (1996)Google Scholar
  48. 49.
    D.R. Mckenzie, Tetrahedral bonding in amorphous carbon. Rep. Prog. Phys. 59, 1611 (1996)CrossRefGoogle Scholar
  49. 50.
    H. Tsai, D.B. Bogi, Characterisation of diamond-like carbon films and their application as overcoats on thin-film media for magnetic recording. J. Vac. Sci. Technol. A 5(6), 3287 (1987)CrossRefGoogle Scholar
  50. 51.
    J.P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila, Preparation and properties of high density hydrogen free hard carbon films with direction beam or arc discharge deposition mater. Sci. Forum 52–53, 197 (1990)CrossRefGoogle Scholar
  51. 52.
    Y. Liftshitz, S.R. Kasi, J.W. Rabalais, Carbon (sp3) film growth from mass selected ion beams: parametric investigations and subplantation model. Mater. Sci. Forum 52–53, 237 (1990)CrossRefGoogle Scholar
  52. 53.
    Y. Lifshitz, G.D. Lempert, E. Grossman, I. Avigal, C. UzanSaguy, R. Kalish, J. Kulik, D. Marton, J.W. Rabalais, The influence of substrate temperature during ion beam deposition on the diamond-like or graphitic nature of carbon films. Diam. Relat. Mater. 4, 287 (1995)CrossRefGoogle Scholar
  53. 54.
    C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993)CrossRefGoogle Scholar
  54. 55.
    J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diam. Relat. Mater. 2, 984 (1993)CrossRefGoogle Scholar
  55. 56.
    Y. Lifshitz, S.R. Kasi, J.W. Rabalais, Subplantation model for film growth from hyperthermal species: application to diamond. Phys. Rev. Lett. 62, 1290 (1990)CrossRefGoogle Scholar
  56. 57.
    B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diam. Relat. Mater. 8, 1985 (1999)CrossRefGoogle Scholar
  57. 58.
    A.K. Sikder, T. Sharda, D.S. Misra, P. Selvam, Chemical vapour deposition of diamond on stainless steel: the effect of Ni-diamond composite coated buffer layer. Diam. Relat. Mater. 7, 1010 (1998)CrossRefGoogle Scholar
  58. 59.
    M. Chhowalla, Y. Yin, G.A.J. Amaratunga, D.R. McKenzie, Th Fraurnheim, Highly tetrahedral amorphous carbon films with low stress. Appl. Phys. Lett. 69, 2344 (1996)CrossRefGoogle Scholar
  59. 60.
    C.B. Collins, F. Davanloo, T.J. Lee, D.R. Jander, J.H. You, H. Park, J.C. Pivin, The bonding of protective films of amorphic diamond to titanium. J. Appl. Phys. 71, 3260 (1992)CrossRefGoogle Scholar
  60. 61.
    A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530 (2009)CrossRefGoogle Scholar
  61. 62.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  62. 63.
    J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev. 109, 272 (1958)CrossRefGoogle Scholar
  63. 64.
    G.W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 244 (1984)MathSciNetCrossRefGoogle Scholar
  64. 65.
    C.N.R. Rao, U. Maitra, H.S.S. Ramakrishna Matte, Synthesis, characterization, and selected properties of graphene, in Graphene: Synthesis, Properties, and Phenomena, 1st edn, ed. by C.N.R. Rao, A.K. Sood (wiley, Chichester, 2013)Google Scholar
  65. 66.
    M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content. ACA Nano 3(12), 3884–3890 (2009)CrossRefGoogle Scholar
  66. 67.
    M. Fuller, The axial ratio and lattice constants of zinc oxide. Science 70, 196 (1929)CrossRefGoogle Scholar
  67. 68.
    C. Bunn, The lattice-dimensions of zinc oxide. Proc. Phys. Soc. 47, 835 (1935)CrossRefGoogle Scholar
  68. 69.
    U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41301 (2005)Google Scholar
  69. 70.
    J. Grabowska, K.K. Nanda, E. McGlynn, J.-P. Mosnier, M.O. Henry, A. Beaucamp, A. Meaney, Synthesis and photoluminescence of ZnO nanowires/nanorods. J. Mater. Sci. Mater. Electron. 16, 397 (2005)CrossRefGoogle Scholar
  70. 71.
    J. Grabowska, K.K. Nanda, E. McGlynn, J.-P. Mosnier, M.O. Henry, Control of ZnO nanorod array density by Zn supersaturation variation and effects on field emission. Surf. Coat. Technol. 200, 1093 (2005)CrossRefGoogle Scholar
  71. 72.
    C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 84, 782 (2004)CrossRefGoogle Scholar
  72. 73.
    W.Z. Wang, B.Q. Zeng, J. Yang, B. Poudel, J.Y. Huang, M.J. Naughton, Z.F. Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 18, 3275 (2006)CrossRefGoogle Scholar
  73. 74.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)CrossRefGoogle Scholar
  74. 75.
    J. Grabowska, A. Meaney, K.K. Nanda, J.-P. Mosnier, M.O. Henry, J.R. Duclere, E. McGlynn, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential. Phys. Rev. B 71, 115439 (2005)CrossRefGoogle Scholar
  75. 76.
    Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003)CrossRefGoogle Scholar
  76. 77.
    Y. Qiu, S. Yang, ZnO Nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Func. Mater. 17, 1345 (2007)CrossRefGoogle Scholar
  77. 78.
    W.I. Park, D.H. Kim, S.-W. Jung, G.C. Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 80, 4232 (2002)CrossRefGoogle Scholar
  78. 79.
    X. Fan, M.L. Zhang, I. Shafiq, W.J. Zhang, C.S. Lee, S.T. Lee, ZnS/ZnO heterojunction nanoribbons. Adv. Mater. 21, 2393 (2009)CrossRefGoogle Scholar
  79. 80.
    M. Riaz, J. Song, O. Nur, Z.L. Wang, M. Willander, Study of the piezoelectric power generation of ZnO nanowire arrays grown by different methods. Adv. Funct. Mater. XX, 1–6 (2010). doi: 10.1002/adfm.201001203 Google Scholar
  80. 81.
    J.J. Wu, S.C. Liu, Catalyst-free growth and characterization of ZnO nanorods. Adv. Mater. 14, 215 (2002)CrossRefGoogle Scholar
  81. 82.
    X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102 (2007)CrossRefGoogle Scholar
  82. 83.
    Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire array. Science 312, 242 (2006)CrossRefGoogle Scholar
  83. 84.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruth, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648 (2002)CrossRefGoogle Scholar
  84. 85.
    E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002)CrossRefGoogle Scholar
  85. 86.
    M. Zhao, Z.L. Wang, S.X. Mao, Piezoelectric characterization on individual zinc oxide nanobelt under piezoresponse force microscope. Nano Lett. 4, 587 (2004)CrossRefGoogle Scholar
  86. 87.
    W. Hughes, Z.L. Wang, Nanobelts as nanocantilevers. Appl. Phys. Lett. 82, 2886 (2003)CrossRefGoogle Scholar
  87. 88.
    H.T. Wang, Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 86, 243503 (2005)CrossRefGoogle Scholar
  88. 89.
    W. Lee, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation. Acta Mater. 52, 3949 (2004)CrossRefGoogle Scholar
  89. 90.
    S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110 (2001)CrossRefGoogle Scholar
  90. 91.
    Y.P. Liu, Y. Guo, J.Q. Li, M. Trunk, A.Y. Kuznetsov, J.B. Xu, Z.X. Mei, X.L. Du, Temperature dependence of surface plasmon mediated near band-edge emission from Ag/ZnO nanorods. J. Opt. 13, 075003 (2011)CrossRefGoogle Scholar
  91. 92.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruth, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648 (2002)CrossRefGoogle Scholar
  92. 93.
    M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. 107, 659 (2003)CrossRefGoogle Scholar
  93. 94.
    P. Hui, L. Jizhong, S. Han, F. Yuanping, P. Cheekok, L. Jianyi, Hydrogen storage of ZnO and Mg doped ZnO nanowires. Nanotechnology 17, 2963 (2006)CrossRefGoogle Scholar
  94. 95.
    Q. Wan, C.L. Lin, X.B. Yu, T.H. Wang, Room-temperature hydrogen storage characteristics of ZnO nanowires. Appl. Phys. Lett. 84, 124 (2004)CrossRefGoogle Scholar
  95. 96.
    M. Ahmad, J. Zhu, ZnO based advanced functional nanostructures: synthesis, properties and applications. J. Mater. Chem. 21, 599 (2010)CrossRefGoogle Scholar
  96. 97.
    H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 25, 4728 (2003)CrossRefGoogle Scholar
  97. 98.
    J.C. Johnson, H. Yan, P. Yang, R.J. Saykalley, Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 105, 8816 (2001)CrossRefGoogle Scholar
  98. 99.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)CrossRefGoogle Scholar
  99. 100.
    J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6(8), 1719–1722 (2006)Google Scholar
  100. 101.
    I. Bedja, P.V. Kamat, X. Hua, A.G. Lappin, S. Hotchandani, Photosensitization of nanocrystalline ZnO films by Bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II). Langmuir 13, 2398 (1997)CrossRefGoogle Scholar
  101. 102.
    K. Keis, C. Bauer, G. Boschloo, J. Photochem et al., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Photobiol. A 148, 57 (2002)CrossRefGoogle Scholar
  102. 103.
    K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nano structured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51 (2002)CrossRefGoogle Scholar
  103. 104.
    K. Keis, Photoelectrochemical properties of nano-to microstructured ZnO electrodes. J. Electrochem. Soc. 148, 149 (2001)Google Scholar
  104. 105.
    R. Katoh, A. Furube, Y. Tamaki, T. Yoshihara, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Microscopic imaging of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film. J. Photochem. Photobiol. A 166, 69 (2004)CrossRefGoogle Scholar
  105. 106.
    R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818 (2004)CrossRefGoogle Scholar
  106. 107.
    A. Furube, R. Katoh, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Ultrafast stepwise electron injection from photoexcited Ru-complex into nanocrystalline ZnO film via intermediates at the surface. J. Phys. Chem. B 107, 4162 (2003)CrossRefGoogle Scholar
  107. 108.
    H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3–Zn2+) aggregate formation. J. Phys. Chem. B 107, 2570 (2003)CrossRefGoogle Scholar
  108. 109.
    B. O’Regan, M.A. Grätzel, Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)CrossRefGoogle Scholar
  109. 110.
    W. Lee, M.-C. Jeong, J.-M. Myoung, Fabrication and application potential of ZnO nanowires grown on GaAs (002) substrates by metal–organic chemical vapour deposition. Nanotechnology 15, 254 (2004)CrossRefGoogle Scholar
  110. 111.
    Y. Huang, X. Bai, Y. Zhang, In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. J. Phys. Condens. Mat. 18, 179–184 (2006)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Zishan H. Khan
    • 1
    Email author
  • Avshish Kumar
    • 2
  • Samina Husain
    • 2
  • M. Husain
    • 2
    • 3
  1. 1.Department of Applied Sciences and HumanitiesJamia Millia IslamiaNew DelhiIndia
  2. 2.Center for Nanoscience and NanotechnologyJamia Millia IslamiaNew DelhiIndia
  3. 3.MJP Rohilkhand UniversityBareillyIndia

Personalised recommendations