Plant Heat Stress Response and Thermotolerance

  • Sascha Röth
  • Puneet Paul
  • Sotirios FragkostefanakisEmail author


Climate change and global warming are considered to be major threats for agricultural production and food safety. Decreased yield of several important crops has already been related to frequently occurring extreme environmental conditions such as heat waves. Since most of the economically and dietary important crops are sensitive to high temperatures, the development of cultivars that can withstand adverse temperatures is a prerequisite for meeting the demands for increased food production. The processes of sensing and responding to heat are complex phenomena in plants which comprise the activation of numerous regulatory and signaling pathways that eventually lead to a fine metabolic adjustment to ensure cell survival. Currently, our knowledge of heat stress response is greatly advanced by the massive production of datasets derived from -omics studies which supplement the current models with new genes, proteins, and metabolites or even introduce whole new pathways. This information is essential for the improvement of plant thermotolerance either through breeding programs or approaches using genetic engineering. This chapter contains an assembly of several aspects regarding heat stress response and thermotolerance. The effects of high temperatures on major aspects of plant growth and development are described, and different methods for thermotolerance screening are presented. In addition, putative heat sensing mechanisms are discussed and the most important metabolic changes are elaborated. Last, a summary of efforts and strategies to improve thermotolerance by breeding or genetic engineering is given.


Heat stress Thermotolerance Abiotic stress Sensing Unfolded protein response 



This chapter is dedicated to Prof. Lutz Nover, a pioneer of research on plant heat stress response. We would also like to thank Enrico Schleiff and Klaus-Dieter Scharf for critical comments during writing the manuscript and providing support to P. Paul and S. Fragkostefanakis in frame of the Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) consortium. S. Röth was supported by a stipendium of the Buchmann Stiftung at the Goethe University Frankfurt.


  1. Abdulbaki AA (1991) Tolerance of tomato cultivars and selected germplasm to heat-stress. J Am Soc Hortic Sci 116:1113–1116Google Scholar
  2. Abdulbaki AA, Stommel JR (1995) Pollen viability and fruit-set of tomato genotypes under optimum-temperature and high-temperature regimes. Hortscience 30:115–117Google Scholar
  3. Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94. doi: 10.1126/science.1118642 PubMedCrossRefGoogle Scholar
  4. Ahmad S, Rahman M, Quamruzzaman A, Uddin M (2010) Genetic analysis of quantitative characters of in heat tolerant tomato (Solanum lycopersicum L.). J Innov Dev Strateg 4:27–33Google Scholar
  5. Ahmed FE, Hall AE, Demason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79:784–791. doi: 10.2307/2444945 CrossRefGoogle Scholar
  6. Ahn YJ, Zimmerman JL (2006) Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant Cell Environ 29:95–104. doi: 10.1111/j.1365-3040.2005.01403.x PubMedCrossRefGoogle Scholar
  7. Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530. doi: 10.1104/pp. 110.161349 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alia HH, Chen THH, Murata N (1998) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ 21:232–239. doi: 10.1046/j.1365-3040.1998.00264.x CrossRefGoogle Scholar
  9. Arbona V, Manzi M, de Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911. doi: 10.3390/Ijms14034885 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition. Elsevier, Amsterdam, pp 227–287Google Scholar
  11. Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86. doi: 10.1023/B:Biop.0000024279.44013.61 CrossRefGoogle Scholar
  12. Astier J, Rasul S, Koen E et al (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181:527–533. doi: 10.1016/j.plantsci.2011.02.011 PubMedCrossRefGoogle Scholar
  13. Balogh G, Peter M, Glatz A, Gombos I, Torok Z, Horvath I, Harwood JL, Vigh L (2013) Key role of lipids in heat stress management. FEBS Lett 587:1970–1980. doi: 10.1016/j.febslet.2013.05.016 PubMedCrossRefGoogle Scholar
  14. Banon S, Fernandez JA, Franco JA, Torrecillas A, Alarcon JJ, Sanchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic-Amst 101(3):333–342. doi: 10.1016/j.scienta.2003.11.007 CrossRefGoogle Scholar
  15. Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38. doi: 10.1111/j.1365-3040.2007.01727.x PubMedGoogle Scholar
  16. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244. doi: 10.1126/science.1164363 PubMedCrossRefGoogle Scholar
  17. Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3:199–208. doi: 10.1006/niox.1999.0222 PubMedCrossRefGoogle Scholar
  18. Bergmuller E, Porfirova S, Dormann P (2003) Characterization of an Arabidopsis mutant deficient in gamma-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190. doi: 10.1023/B:Plan.0000004307.62398.91 PubMedCrossRefGoogle Scholar
  19. Berry SZ, Uddin MR (1988) Effect of high-temperature on fruit-set in tomato cultivars and selected germplasm. Hortscience 23:606–608Google Scholar
  20. Bharti K, Von Koskull-Döring P, Bharti S et al (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16:1521–1535. doi: 10.1105/tpc.019927 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. doi: 10.3389/fpls.2013.00273 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33:168–171. doi: 10.1038/Ng1085 PubMedCrossRefGoogle Scholar
  23. Blum A, Klueva N, Nguyen HT (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123. doi: 10.1023/A:1004083305905 CrossRefGoogle Scholar
  24. Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network C, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315. doi: 10.3389/fpls.2013.00315
  25. Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115. doi: 10.1016/j.tplants.2004.01.006 PubMedCrossRefGoogle Scholar
  26. Bunce MW, Bergendahl K, Anderson RA (2006) Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta 1761:560–569. doi: 10.1016/j.bbalip.2006.03.002 PubMedCrossRefGoogle Scholar
  27. Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70. doi:
  28. Chalker-Scott L (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv Bot Res 37:103–127. doi: 10.1016/S0065-2296(02)37046-0 CrossRefGoogle Scholar
  29. Chan-Schaminet KY, Baniwal SK, Bublak D et al (2009) Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J Biol Chem 284:20848–20857. doi: 10.1074/jbc.M109.007336 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Che P, Bussell JD, Zhou W et al (2010) Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci Signal 3:ra69. doi: 10.1126/scisignal.2001140 PubMedCrossRefGoogle Scholar
  31. Cheng L, Zou YJ, Ding SL, Zhang JJ, Yu XL, Cao JS, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499. doi: 10.1111/j.1744-7909.2009.00816.x PubMedCrossRefGoogle Scholar
  32. Cline WR (2007) Global warming and agriculture: end-of-century estimates by country. Peterson Institute, WashingtonGoogle Scholar
  33. Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A (2010) Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol Biol 74:33–45. doi: 10.1007/s11103-010-9652-1 PubMedCrossRefGoogle Scholar
  34. Cvikrova M, Gemperlova L, Dobra J, Martincova O, Prasil IT, Gubis J, Vankova R (2012) Effect of heat stress on polyannine metabolism in proline-over-producing tobacco plants. Plant Sci 182:49–58. doi: 10.1016/j.plantsci.2011.01.016 PubMedCrossRefGoogle Scholar
  35. Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206. doi: 10.1038/Nature00861 PubMedCrossRefGoogle Scholar
  36. de Ronde JA, Spreeth MH, Cress WA (2000) Effect of antisense L-Delta(1)-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul 32:13–26. doi: 10.1023/A:1006338911617 CrossRefGoogle Scholar
  37. De Ronde JA, Cress WA, Kruger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224. doi: 10.1016/j.jplph.2004.01.014 PubMedCrossRefGoogle Scholar
  38. Deng Y, Humbert S, Liu J-X et al (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci U S A 108:7247–7252. doi: 10.1073/pnas.1102117108 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276(43):39586–39591. doi: 10.1074/jbc.M103081200 PubMedCrossRefGoogle Scholar
  40. Dias AS, Lidon FC (2009) Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J Agron Crop Sci 195:137–147. doi: 10.1111/j.1439-037X.2008.00347.x CrossRefGoogle Scholar
  41. Dietz K-J (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1–40. doi: 10.1089/ars.2013.5672Google Scholar
  42. Djanaguiraman M, Annie Sheeba J, Durga Devi D, Bangarusamy U (2009) Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. J Agron Crop Sci 195:213–224CrossRefGoogle Scholar
  43. Dupont FM, Hurkman WJ, Vensel WH, Tanaka C, Kothari KM, Chung OK, Altenbach SB (2006) Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. Eur J Agron 25:96–107. doi: 10.1016/j.eja.2006.04.003 CrossRefGoogle Scholar
  44. Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19. doi: 10.1016/j.tplants.2007.10.005 PubMedCrossRefGoogle Scholar
  45. Feng LL, Han YJ, Liu G, An BG, Yang J, Yang GH, Li YS, Zhu YG (2007) Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34:822–834. doi: 10.1071/Fp07074 CrossRefGoogle Scholar
  46. Firon N, Shaked R, Peet MM, Pharr DM, Zamski E, Rosenfeld K, Althan L, Pressman E (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic-Amst 109:212–217. doi: 10.1016/j.scienta.2006.03.007 CrossRefGoogle Scholar
  47. Firon N, Pressman E, Meir S, Khoury R, Altahan L (2012) Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB plants 2012:pls024. doi:10.1093/aobpla/pls024PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fouad WM, Altpeter F (2009) Transplastomic expression of bacterial l-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res 18:707–718. doi: 10.1007/s11248-009-9258-z PubMedCrossRefGoogle Scholar
  49. Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908. doi: 10.1093/Jxb/Erp234 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Frova C, Sarigorla M (1994) Quantitative Trait Loci (QTLs) for pollen thermotolerance detected in maize. Mol Gen Genet 245:424–430. doi: 10.1007/Bf00302254 PubMedCrossRefGoogle Scholar
  51. Fu JM, Momcilovic I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO(2) fixation in wheat (Triticum aestivum) following heat stress. Plant Mol Biol 68:277–288. doi: 10.1007/s11103-008-9369-6 PubMedCrossRefGoogle Scholar
  52. Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644. doi: 10.1016/j.tplants.2011.09.005 PubMedCrossRefGoogle Scholar
  53. Gaupels F, Kuruthukulangarakoola GT, Durner J (2011). Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 14: 707-714. doi: 10.1016/j.pbi.2011.07.005
  54. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016 PubMedCrossRefGoogle Scholar
  55. Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61:453–462. doi: 10.1093/Jxb/Erp316 PubMedCrossRefGoogle Scholar
  56. Giorno F, Wolters-Arts M, Mariani C, Rieu I (2013) Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants 2:489–506PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437. doi: 10.1104/Pp.116.1.429 PubMedCentralCrossRefGoogle Scholar
  58. Gould KS, Lamotte O, Klinguer A et al (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862. doi: 10.1046/j.1365-3040.2003.01101.x CrossRefGoogle Scholar
  59. Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205:38–47. doi: 10.1016/j.plantsci.2013.01.005 PubMedCrossRefGoogle Scholar
  60. Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516. doi: 10.1093/jxb/erj053 PubMedCrossRefGoogle Scholar
  61. Hahn A, Bublak D, Schleiff E, Scharf K-D (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755. doi: 10.1105/tpc.110.076018 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hanson PM, Chen J, Kuo G (2002) Gene action and heritability of high-temperature fruit set in tomato line CL5915. Hortscience 37:172–175Google Scholar
  63. Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553. doi: 10.1046/j.1365-3040.1998.00309.x CrossRefGoogle Scholar
  64. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151CrossRefGoogle Scholar
  65. Hedhly A, Hormaza JI, Herrero M (2003) The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell Environ 26:1673–1680. doi: 10.1046/j.1365-3040.2003.01085.x CrossRefGoogle Scholar
  66. Hedhly A, Hormaza JI, Herrero M (2005) The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol 7:476–483. doi: 10.1055/s-2005-865850 PubMedCrossRefGoogle Scholar
  67. Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36. doi: 10.1016/j.tplants.2008.11.001 PubMedCrossRefGoogle Scholar
  68. Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc, New YorkGoogle Scholar
  69. Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499. doi: 10.1146/annurev-arplant-050312-120053 PubMedCrossRefGoogle Scholar
  70. Ibrahim AMH, Quick JS (2001) Heritability of heat tolerance in winter and spring wheat. Crop Sci 41:1401–1405CrossRefGoogle Scholar
  71. Isner J-C, Maathuis FJM (2011) Measurement of cellular cGMP in plant cells and tissues using the endogenous fluorescent reporter FlincG. Plant J 65:329–334. doi: 10.1111/j.1365-313X.2010.04418.x PubMedCrossRefGoogle Scholar
  72. Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ (2010) Genetic analysis of heat tolerance at anthesis in rice. Crop Sci 50:1633–1641. doi: 10.2135/cropsci2009.09.0516 CrossRefGoogle Scholar
  73. Jain M, Prasad PVV, Boote KJ, Hartwell AL, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67–79. doi: 10.1007/s00425-007-0595-y PubMedCrossRefGoogle Scholar
  74. Jung H, Crisp PA, Estavillo GM et al (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci U S A 110:14474–14479. doi: 10.1073/pnas.1311632110 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PV, Reddy VR, Zhao D (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67. doi: 10.1093/aob/mci149 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168. doi: 10.1104/pp. 104.052142 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Karim MA, Fracheboud Y, Stamp P (1997) Heat tolerance of maize with reference of some physiological characteristics. Ann Bangladesh Agric 7:27–33Google Scholar
  78. Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83CrossRefGoogle Scholar
  79. Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509. doi: 10.1080/07352680091139277 CrossRefGoogle Scholar
  80. Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316. doi: 10.1016/j.pbi.2007.04.011 PubMedCrossRefGoogle Scholar
  81. Kozai N, Beppu K, Mochioka R, Boonprakob U, Subhadrabandhu S, Kataoka I (2004) Adverse effects of high temperature on the development of reproductive organs in ‘Hakuho’ peach trees. J Hortic Sci Biotech 79:533–537CrossRefGoogle Scholar
  82. Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147. doi: 10.1016/j.cell.2009.11.006 PubMedCrossRefGoogle Scholar
  83. Kumar A, Li C, Portis AR Jr (2009) Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res 100:143–153. doi: 10.1007/s11120-009-9438-y PubMedCrossRefGoogle Scholar
  84. Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241. doi: 10.1105/tpc.107.054171 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40. doi: 10.1016/j.tibtech.2010.09.006 PubMedCrossRefGoogle Scholar
  86. Larkindale J, Huang BR (2004) Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environ Exp Bot 51:57–67. doi: 10.1016/S0098-8472(03)00060-1 CrossRefGoogle Scholar
  87. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. doi: 10.1104/Pp.010320 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897. doi: 10.1104/pp. 105.062257 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802. doi: 10.1105/tpc.107.052647 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Li B, Liu H-T, Sun D-Y, Zhou R-G (2004) Ca(2+) and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634PubMedCrossRefGoogle Scholar
  91. Liu JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942. doi: 10.1105/tpc.110.078154 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Liu XZ, Huang BR (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci 40:503–510CrossRefGoogle Scholar
  93. Liu XH, Huang BR (2002) Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Sci 42:466–472CrossRefGoogle Scholar
  94. Liu XH, Huang BR, Banowetz G (2002) Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci 42:457–465CrossRefGoogle Scholar
  95. Liu H-T, Li B, Shang Z-L et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195. doi: 10.1104/pp. 102.018564 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Liu K, Li L, Luan S (2005) An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels. Plant J 42:433–443. doi: 10.1111/j.1365-313X.2005.02384.x PubMedCrossRefGoogle Scholar
  97. Liu H-T, Li G-L, Chang H et al (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–164. doi: 10.1111/j.1365-3040.2006.01613.x PubMedCrossRefGoogle Scholar
  98. Liu H-T, Gao F, Li G-L et al (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773. doi: 10.1111/j.1365-313X.2008.03544.x PubMedCrossRefGoogle Scholar
  99. Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34(5):738–751. doi: 10.1111/j.1365-3040.2011.02278.x PubMedCrossRefGoogle Scholar
  100. Liu J, Sun N, Liu M et al (2013) An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiol 162:512–521. doi: 10.1104/pp. 112.205864 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248. doi: 10.1016/j.pbi.2010.04.008 PubMedCrossRefGoogle Scholar
  102. Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116:489–509. doi: 10.1007/s11120-013-9823-4 PubMedCrossRefGoogle Scholar
  103. Ludwig-Muller J, Krishna P, Forreiter C (2000) A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol 123:949–958. doi: 10.1104/Pp.123.3.949 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384. doi: 10.1016/j.envexpbot.2007.11.016 CrossRefGoogle Scholar
  105. Luo M, Liu X, Singh P et al (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136. doi: 10.1016/j.bbagrm.2011.06.008 PubMedCrossRefGoogle Scholar
  106. Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Amino Acids 41:S69–S69Google Scholar
  107. Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681. doi: 10.1023/A:1014826730024 PubMedCrossRefGoogle Scholar
  108. Mascarenhas JP, Hamilton DA (1992) Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35S-GUS construct. Plant J 2:405–408. doi: 10.1111/j.1365-313X.1992.00405.x CrossRefGoogle Scholar
  109. McClung CR, Davis SJ (2010) Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol 20:R1086–R1092. doi: 10.1016/j.cub.2010.10.035 PubMedCrossRefGoogle Scholar
  110. McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949. doi: 10.1104/Pp.120.4.945 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mengel A, Chaki M, Shekariesfahlan A, Lindermayr C (2013) Effect of nitric oxide on gene transcription-S-nitrosylation of nuclear proteins. Front Plant Sci 4:293. doi: 10.3389/fpls.2013.00293 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x
  113. Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288. doi: 10.1093/aob/mcl107 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Miranda JA, Avonce N, Suarez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421. doi: 10.1007/s00425-007-0579-y PubMedCrossRefGoogle Scholar
  115. Mishkind M, Vermeer JEM, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J 60:10–21. doi: 10.1111/j.1365-313X.2009.03933.x PubMedCrossRefGoogle Scholar
  116. Mishra SK, Tripp J, Winkelhaus S et al (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567. doi: 10.1101/gad.228802 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. doi: 10.1016/j.tplants.2005.11.002 PubMedCrossRefGoogle Scholar
  118. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi: 10.1016/j.tplants.2004.08.009 PubMedCrossRefGoogle Scholar
  119. Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125. doi: 10.1016/j.tibs.2011.11.007 PubMedCrossRefGoogle Scholar
  120. Mizuguchi G, Shen X, Landry J et al (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348. doi: 10.1126/science.1090701 PubMedCrossRefGoogle Scholar
  121. Mlynárová L, Nap J-P, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi: 10.1111/j.1365-313X.2007.03185.x PubMedCrossRefGoogle Scholar
  122. Morales D, Rodriguez P, Dell’Amico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208CrossRefGoogle Scholar
  123. Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80PubMedCrossRefGoogle Scholar
  124. Morrison MJ, Stewart DW (2002) Heat stress during flowering in summer Brassica. Crop Sci 42:797–803CrossRefGoogle Scholar
  125. Mostafa H, Hassanein R, Khalil S, El-Khawas S, El-Bassiouny H, El-Monem A (2010) Effect of arginine or putrescine on growth, yield and yield components of late sowing wheat. J Appl Sci Res 6:177–183Google Scholar
  126. Murkowski A (2001) Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biol Plant 44:53–57. doi: 10.1023/A:1017966203859 CrossRefGoogle Scholar
  127. Murray V, Ebi KL (2012) IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). J Epidemiol Community Health 66:759–760. doi: 10.1136/jech-2012-201045 PubMedCrossRefGoogle Scholar
  128. Mutters RG, Ferreira LGR, Hall AE (1989) Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Sci 29(6):1497–1500CrossRefGoogle Scholar
  129. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35. doi: 10.1046/j.1469-8137.2003.00804.x CrossRefGoogle Scholar
  130. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547. doi: 10.1111/j.1365-313X.2006.02889.x PubMedCrossRefGoogle Scholar
  131. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. doi: 10.1104/pp. 108.122465 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Osborne SL, Thomas CL, Gschmeissner S, Schiavo G (2001) Nuclear PtdIns (4,5) P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114:2501–2511PubMedGoogle Scholar
  133. Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem-II complex. Photosynth Res 44:243–252. doi: 10.1007/Bf00048597 PubMedCrossRefGoogle Scholar
  134. Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730. doi: 10.1093/Jxb/Ers336 PubMedCrossRefGoogle Scholar
  135. Pearcy RW (1978) Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol 61:484–486PubMedPubMedCentralCrossRefGoogle Scholar
  136. Perez-de-Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195PubMedPubMedCentralCrossRefGoogle Scholar
  137. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652. doi: 10.1016/j.pbi.2007.07.013 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001-1021. doi: 10.1007/s00122-010-1351-4
  139. Piterková J, Luhová L, Mieslerová B et al (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57–65. doi: 10.1016/j.plantsci.2013.02.010 PubMedCrossRefGoogle Scholar
  140. Portis AR Jr (2003) Rubisco activase – Rubisco’s catalytic chaperone. Photosynth Res 75:11–27. doi: 10.1023/A:1022458108678 PubMedCrossRefGoogle Scholar
  141. Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282CrossRefGoogle Scholar
  142. Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012) High temperature tolerance in aegilops species and its potential transfer to wheat. Crop Sci 52:292–304. doi: 10.2135/cropsci2011.04.0186 CrossRefGoogle Scholar
  143. Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res 95:398–411. doi: 10.1016/j.fcr.2005.04.008 CrossRefGoogle Scholar
  144. Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917. doi: 10.2135/cropsci2008.01.0036 CrossRefGoogle Scholar
  145. Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot-Lond 90:631–636. doi: 10.1093/Aob/Mcf240 CrossRefGoogle Scholar
  146. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69. doi: 10.1111/j.1365-313X.2007.03034.x PubMedCrossRefGoogle Scholar
  147. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487PubMedCrossRefGoogle Scholar
  148. Raines CA, Harrison EP, Olcer H, Lloyd JC (2000) Investigating the role of the thiol-regulated enzyme sedoheptulose-1,7-bisphosphatase in the control of photosynthesis. Physiol Plant 110:303–308. doi: 10.1034/j.1399-3054.2000.1100303.x CrossRefGoogle Scholar
  149. Raison JK, Pike CS, Berry JA (1982) Growth temperature-induced alterations in the thermotropic properties of Nerium oleander membrane lipids. Plant Physiol 70:215–218PubMedPubMedCentralCrossRefGoogle Scholar
  150. Rasheed R, Wahid A, Farooq M, Hussain I, Basra SMA (2011) Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul 65:35–45. doi: 10.1007/s10725-011-9572-3 CrossRefGoogle Scholar
  151. Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Funct Plant Biol 21:717-730. doi: 10.1071/PP9940717
  152. Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321. doi: 10.1016/S0168-9452(00)00395-2 PubMedCrossRefGoogle Scholar
  153. Rivero RM, Ruiz JM, Romero LM (2004) Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants. Plant Biol 6:702–707. doi: 10.1055/s-2004-821293 PubMedCrossRefGoogle Scholar
  154. Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. doi: 10.1104/pp. 103.033431 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Rodrigo J, Herrero M (2002) Effects of pre-blossom temperatures on flower development and fruit set in apricot. Sci Hortic-Amst 92:125–135. doi: 10.1016/S0304-4238(01)00289-8 CrossRefGoogle Scholar
  156. Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22:1–10Google Scholar
  157. Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Physiol Plant 98:196–200CrossRefGoogle Scholar
  158. Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232. doi: 10.1016/j.envexpbot.2010.05.011 CrossRefGoogle Scholar
  159. Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106. doi: 10.1111/j.1365-3040.2007.01682.x PubMedCrossRefGoogle Scholar
  160. Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJM, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843. doi: 10.1105/tpc.108.065318 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171. doi: 10.1046/j.0016-8025.2001.00790.x PubMedCrossRefGoogle Scholar
  162. Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. Intl J Plant Dev Biol 2:42–51Google Scholar
  163. Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci U S A 107:8569–8574. doi: 10.1073/pnas.10008 69107 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297PubMedCrossRefGoogle Scholar
  165. Salvucci ME (2008) Association of Rubisco activase with chaperonin-60 beta: a possible mechanism for protecting photosynthesis during heat stress. J Exp Bot 59:1923–1933. doi: 10.1093/Jxb/Erm343 PubMedCrossRefGoogle Scholar
  166. Salvucci ME, Crafts-Brandner SJ (2004) Mechanism for deactivation of Rubisco under moderate heat stress. Physiol Plant 122:513–519. doi: 10.1111/j.1399-3054.2004.00419.x CrossRefGoogle Scholar
  167. Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195. doi: 10.1093/jexbot/53.371.1187 PubMedCrossRefGoogle Scholar
  168. Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot-Lond 97:731–738. doi: 10.1093/Aob/Mcl037 CrossRefGoogle Scholar
  169. Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237. doi: 10.1379/1466-1268(2001)006<0225:Tefoat>2.0.Co;2 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119. doi: 10.1016/j.bbagrm.2011.10.002 PubMedCrossRefGoogle Scholar
  171. Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735. doi: 10.1111/j.1365-3040.2004.01172.x CrossRefGoogle Scholar
  172. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60. doi: 10.1105/Tpc.017012 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Setimela PS, Andrews DJ, Partridge J, Eskridge KM (2005) Screening sorghum seedlings for heat tolerance using a laboratory method. Eur J Agron 23:103–107. doi: 10.1016/j.eja.2004.09.008 CrossRefGoogle Scholar
  174. Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226. doi: 10.1023/A:1026237816578 CrossRefGoogle Scholar
  175. Shaked-Sachray L, Weiss D, Reuveni M, Nissim-Levi A, Oren-Shamir M (2002) Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiol Plant 114:559–565. doi: 10.1034/j.1399-3054.2002.1140408.x PubMedCrossRefGoogle Scholar
  176. Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043. doi: 10.1105/tpc.109.066902 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039PubMedCrossRefGoogle Scholar
  178. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648. doi: 10.1016/S1097-2765(00)80064-7 PubMedCrossRefGoogle Scholar
  179. Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119. doi: 10.1007/s10725-005-3252-0 CrossRefGoogle Scholar
  180. Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66. doi: 10.1046/j.1469-8137.2001.00154.x CrossRefGoogle Scholar
  181. Song JJ, Nada K, Tachibana S (1999) Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum Mill.). Sci Hortic-Amst 80:203–212. doi: 10.1016/S0304-4238(98)00254-4 CrossRefGoogle Scholar
  182. Song JJ, Nada K, Tachibana S (2002) Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol 43:619–627. doi: 10.1093/Pcp/Pcf078 PubMedCrossRefGoogle Scholar
  183. Song SQ, Lei YB, Tian XR (2005) Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russ J Plant Physiol 52:793–800. doi: 10.1007/s11183-005-0117-3 CrossRefGoogle Scholar
  184. Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475. doi: 10.1146/annurev.arplant.53.100301.135233 PubMedCrossRefGoogle Scholar
  185. Srivastava R, Deng Y, Shah S, Rao AG, Howell SH (2013) BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bzip28 in arabidopsis. Plant Cell 25:1416–1429. doi: 10.1105/tpc.113.110684 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Suarez R, Calderon C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799. doi: 10.2135/cropsci2008.09.0573 CrossRefGoogle Scholar
  187. Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21:642–654. doi: 10.1105/tpc.108.062596 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Takeoka Y, Hiroi K, Kitano H, Wada T (1991) Pistil hyperplasia in rice spikelets as affected by heat-stress. Sex Plant Reprod 4:39–43CrossRefGoogle Scholar
  189. Talanova VV, Alkimova TV, Titov AF (2003) Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance. Russ J Plant Physiol 50:90–94. doi: 10.1023/A:1021996703940 CrossRefGoogle Scholar
  190. Tang RS, Zheng JC, Jin ZQ, Zhang D, Huang H, Chen LG (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43. doi: 10.1007/s10725-007-9225-8 CrossRefGoogle Scholar
  191. Teklemariam T, Blake TJ (2003) Effects of UVB preconditioning on heat tolerance of cucumber (Cucumis sativus L.). Environ Exp Bot 50:169–182. doi: 10.1016/S0098-8472(03)00024-8 CrossRefGoogle Scholar
  192. Uchida A, Jagendorf AT, Hibino T et al (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523. doi: 10.1016/S0168-9452(02)00159-0 CrossRefGoogle Scholar
  193. Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916. doi: 10.1093/Jxb/Ern164 PubMedCrossRefGoogle Scholar
  194. Van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T (2007) Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026. doi: 10.1111/j.1365-313X.2007.03292.x PubMedCrossRefGoogle Scholar
  195. Vasseur F, Pantin F, Vile D (2011) Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ 34:1563–1576. doi: 10.1111/j.1365-3040.2011.02353.x PubMedCrossRefGoogle Scholar
  196. Vierling E (1991) The Roles of heat-shock proteins in plants. Annu Rev Plant Physiol 42:579–620. doi: 10.1146/annurev.arplant.42.1.579 CrossRefGoogle Scholar
  197. Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730. doi: 10.1016/j.jplph.2005.07.007 PubMedCrossRefGoogle Scholar
  198. Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141. doi: 10.1007/s10725-005-8379-5 CrossRefGoogle Scholar
  199. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi: 10.1016/j.envexpbot.2007.05.011 CrossRefGoogle Scholar
  200. Wallwork MAB, Jenner CF, Logue SJ, Sedgley M (1998) Effect of high temperature during grain-filling on the structure of developing and malted barley grains. Ann Bot-Lond 82:587–599. doi: 10.1006/anbo.1998.0721 CrossRefGoogle Scholar
  201. Wang HT, Bian MD, Yang ZM, Lin CT, Shi WL (2013) Preliminary functional analysis of the isoforms of oshsfa2a (oryza sativa l.) generated by alternative splicing. Plant Mol Biol Rep 31:38–46. doi: 10.1007/s11105-012-0471-1 CrossRefGoogle Scholar
  202. Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002. doi: 10.1074/jbc.M205375200 PubMedCrossRefGoogle Scholar
  203. Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183PubMedCrossRefGoogle Scholar
  204. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513. doi: 10.1126/science.1239402 PubMedCrossRefGoogle Scholar
  205. Willmott N, Sethi JK, Walseth TF et al (1996) Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem 271:3699–3705. doi: 10.1074/jbc.271.7.3699 PubMedCrossRefGoogle Scholar
  206. Wink DA, Hanbauer I, Krishna MC et al (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A 90:9813–9817PubMedPubMedCentralCrossRefGoogle Scholar
  207. Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724. doi: 10.1111/j.1365-3040.2004.01171.x CrossRefGoogle Scholar
  208. Xu S, Li JL, Zhang XQ, Wei H, Cui LJ (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285. doi: 10.1016/j.envexpbot.2005.03.002 CrossRefGoogle Scholar
  209. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92PubMedCrossRefGoogle Scholar
  210. Yamori W, Masumoto C, Fukayama H, Makino A (2012) Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature, and to a lesser extent, of steady-state photosynthesis at high temperature. Plant J 71:871–880. doi: 10.1111/j.1365-313X.2012.05041.x PubMedCrossRefGoogle Scholar
  211. Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282. doi: 10.1023/A:1016350509689 CrossRefGoogle Scholar
  212. Yang XH, Liang Z, Lu CM (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi: 10.1104/pp. 105.063164 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Yoshida T, Ohama N, Nakajima J et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332. doi: 10.1007/s00438-011-0647-7 PubMedCrossRefGoogle Scholar
  214. Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and mega-gametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495. doi: 10.1093/Jxb/Erh038 PubMedCrossRefGoogle Scholar
  215. Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J Integr Plant Biol 47:959–970. doi: 10.1111/j.1744-7909.2005.00109.x CrossRefGoogle Scholar
  216. Zhang LR, Li YS, Xing D, Gao CJ (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091. doi: 10.1093/Jxb/Erp078 PubMedCrossRefGoogle Scholar
  217. Zhu X, Thalor SK, Takahashi Y et al (2012) An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ 35:2014–2030. doi: 10.1111/j.1365-3040.2012.02533.x PubMedCrossRefGoogle Scholar
  218. Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53:144–156. doi: 10.1111/j.1365-313X.2007.03343.x PubMedCrossRefGoogle Scholar
  219. Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968. doi:10.1093/jxb/erq053PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sascha Röth
    • 1
  • Puneet Paul
    • 1
  • Sotirios Fragkostefanakis
    • 1
    Email author
  1. 1.Department of Biosciences, Molecular Cell Biology of PlantsGoethe UniversityFrankfurt am MainGermany

Personalised recommendations