Advertisement

Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture

  • Archna Suman
  • Ajar Nath Yadav
  • Priyanka Verma

Abstract

Endophytic microbes are ubiquitous in most plant species. Endophytic microbes enter plants mainly through wounds, naturally occurring as a result of plant growth or through root hairs and at epidermal conjunctions. Besides gaining entrance to plants through natural openings or wounds, endophytic microbes appear to actively penetrate plant tissues using hydrolytic enzymes like cellulase and pectinase. Diverse community structure of endophytes can be analyzed using culture-dependent and culture-independent method. Endophytic bacteria belong to different phyla such as Acidobacteria, Actinobacteria, Ascomycota, Bacteroidetes, Basidiomycota, Deinococcus-Thermus, and Firmicutes. Endophytic archaea (Euryarchaeota) were reported using only culture-independent method. Endophytic microbes were most predominant and studied and belonged to three major phyla Actinobacteria, Proteobacteria, and Firmicutes. Among reported genera Achromobacter, Bacillus, Burkholderia, Enterobacter, Herbaspirillum, Pantoea, Pseudomonas, Rhizobium, and Streptomyces were dominant in most host plants. Along with common endophytic microbial genera, there were many niche-specific microbial genera that have been reported from different host plants. Application of associative microbes for sustainable agriculture holds immense potential. Endophytic microbes are known to enhance growth and yield of plants by fixing atmospheric nitrogen and solubilization of phosphorus, potassium, and zinc; production of phytohormones (cytokinins, auxins, and gibberellins), ammonia, hydrogen cyanide, and siderophores; and possession of antagonistic activity as well as reducing the level of stress ethylene in host plants. Endophytes seem to contribute to plant fitness and development, displaying beneficial traits that can be exploited in agricultural biotechnology. The interactions between endophytes and plants can promote plant health and play a significant role in low-input sustainable agriculture for both food and nonfood crops. This chapter summarizes part of the work being done on endophytic microbes, including their isolation, identification, diversity, distribution, and applications for sustainable agriculture.

Keywords

Endophytic microbes Diversity Plant growth promotion Biocontrol Sustainable agriculture 

References

  1. Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z 29:111–114Google Scholar
  2. Ambrosini A, Beneduzi A, Stefanski T, Pinheiro F, Vargas L, Passaglia LP (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356(2):245–264CrossRefGoogle Scholar
  3. Andreote FD, Rossetto PB, Souza LC, Marcon J, Maccheroni W, Azevedo JL, Araujo WL (2008) Endophytic population of Pantoea agglomerans in citrus plants and development of a cloning vector for endophytes. J Basic Microbiol 48(5):338–346PubMedCrossRefGoogle Scholar
  4. Aon M, Khalid M, Hussain S, Naveed M, Akhtar MJ (2015) Diazotrophic inoculation supplemented nitrogen demand of flooded rice under field conditions. Pak J Agric Sci 52(1):145–150Google Scholar
  5. Araújo JM, Silva AC, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Biol Technol 43(4):447–451CrossRefGoogle Scholar
  6. Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47(3):229–236PubMedCrossRefGoogle Scholar
  7. Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914PubMedCentralPubMedCrossRefGoogle Scholar
  8. Arora NK (2013) Plant microbe symbiosis: fundamentals and advances. Springer, IndiaCrossRefGoogle Scholar
  9. Arora S, Patel PN, Vanza MJ, Rao G (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8(17):1779–1788CrossRefGoogle Scholar
  10. Assumpção LC, Lacava PT, Dias ACF, Azevedo JL, Menten JOM (2009) Diversity and biotechnological potential of endophytic bacterial community of soybean seeds. Pesq Agrop Brasileira 44(5):503–510CrossRefGoogle Scholar
  11. Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77(3):549–579PubMedCrossRefGoogle Scholar
  12. Bandara W, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31(5):645–650PubMedCrossRefGoogle Scholar
  13. Bell C, Dickie G, Harvey W, Chan J (1995) Endophytic bacteria in grapevine. Can J Microbiol 41(1):46–53CrossRefGoogle Scholar
  14. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51(2):215–229PubMedCrossRefGoogle Scholar
  15. Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27(3):225–237CrossRefGoogle Scholar
  16. Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92(5):880–886CrossRefGoogle Scholar
  17. Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149CrossRefGoogle Scholar
  18. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. doi: 10.1038/ncomms1046 PubMedGoogle Scholar
  19. Castro RA, Quecine MC, Lacava PT, Batista BD, Luvizotto DM, Marcon J, Ferreira A, Melo IS, Azevedo JL (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springer Plus 3(1):382PubMedCentralPubMedCrossRefGoogle Scholar
  20. Castro-González R, Martínez-Aguilar L, Ramírez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J (2011) High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345(1–2):155–169CrossRefGoogle Scholar
  21. Chelius M, Triplett E (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41(3):252–263PubMedCrossRefGoogle Scholar
  22. Cheplick G, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111(1):89–97CrossRefGoogle Scholar
  23. Choudhury AT, Kecskés ML, Kennedy IR (2014) Utilization of BNF technology supplementing urea N for sustainable rice production. J Plant Nutr 37(10):1627–1647CrossRefGoogle Scholar
  24. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69(9):5603–5608PubMedCentralPubMedCrossRefGoogle Scholar
  25. Coombs JT, Michelsen PP, Franco CM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29(3):359–366CrossRefGoogle Scholar
  26. Costa LEO, Queiroz MV, Borges AC, Moraes CA, Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562–1575CrossRefGoogle Scholar
  27. de Bruijn F, Stoltzfus J, So R, Malarvithi P, Ladha J (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 25–36CrossRefGoogle Scholar
  28. de Melo Pereira G, Magalhães K, Lorenzetii E, Souza T, Schwan R (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417PubMedCrossRefGoogle Scholar
  29. de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562PubMedCentralPubMedCrossRefGoogle Scholar
  30. Dias AC, Costa FE, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC, Araújo WL, Azevedo JL, Melo IS (2009) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25(2):189–195CrossRefGoogle Scholar
  31. Dobereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13Google Scholar
  32. Dong Z, McCully M, Canny M (1997) Does acetobacter diazotrophicus live and move in the xylem of sugarcane stems? anatomical and physiological data. Ann Bot 80(2):147–158CrossRefGoogle Scholar
  33. Doty SL (2011) Nitrogen-fixing endophytic bacteria for improved plant growth. In: Bacteria in agrobiology: plant growth responses. Springer-Verlag Berlin Heidelberg, pp 183–199CrossRefGoogle Scholar
  34. Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Res Int. http://dx.doi.org/10.1155/2015/909016
  35. Dudeja SS, Nidhi (2013) Molecular diversity of rhizobial and nonrhizobial bacteria from nodules of cool season legumes. In: Salar RK, Gahlawat SK, Siwach P, Duhan JS (eds) Biotechnology: prospects and applications. Springer, India, pp 113–125CrossRefGoogle Scholar
  36. Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y-I, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629CrossRefGoogle Scholar
  37. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293PubMedCentralPubMedCrossRefGoogle Scholar
  38. Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369(1–2):115–129CrossRefGoogle Scholar
  39. Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65(4):477–505CrossRefGoogle Scholar
  40. Figueiredo M, Martinez C, Burity H, Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193CrossRefGoogle Scholar
  41. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59(5):1115–1126PubMedCrossRefGoogle Scholar
  42. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152PubMedCrossRefGoogle Scholar
  43. Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61(6):485–493PubMedCrossRefGoogle Scholar
  44. Gholami M, Khakvar R, Niknam G (2014) Introduction of some new endophytic bacteria from Bacillus and Streptomyces genera as successful biocontrol agents against Sclerotium rolfsii. Arch Phytopathol Plant Protect 47(1):122–130CrossRefGoogle Scholar
  45. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117CrossRefGoogle Scholar
  46. Glick BR (2015) Introduction to plant growth-promoting bacteria. In: Beneficial plant-bacterial interactions. Springer International Publishing, Switzerland, pp 1–28Google Scholar
  47. Glick B, Patten C, Holguin G, Penrose D (1999) Overview of plant growth-promoting bacteria. In: Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 1–13CrossRefGoogle Scholar
  48. Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203Google Scholar
  49. Govindarajan M, Kwon S-W, Weon H-Y (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23(7):997–1006CrossRefGoogle Scholar
  50. Govindarajan M, Balandreau J, Kwon S-W, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55(1):21–37PubMedCrossRefGoogle Scholar
  51. Guerny K, Mantle P (1993) Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. J Nat Prod 56:1194–1199CrossRefGoogle Scholar
  52. Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R. Br. Appl Soil Ecol 64:252–261CrossRefGoogle Scholar
  53. Gupta G, Parihar S, Ahirwar N, Snehi S, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102Google Scholar
  54. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914CrossRefGoogle Scholar
  55. Hardoim P, Nissinen R, van Elsas JD (2012) Ecology of bacterial endophytes in sustainable agriculture. In: Bacteria in agrobiology: plant probiotics. Springer, New York, pp 97–126CrossRefGoogle Scholar
  56. Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12:92–101Google Scholar
  57. Ikeda AC, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Steffens MBR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65(1):154–160PubMedCrossRefGoogle Scholar
  58. Inderiati S, Franco CM (2008) Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res 1:1–6Google Scholar
  59. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17(10):1078–1085PubMedCrossRefGoogle Scholar
  60. Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2009) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ/JSME 25(1):58–61CrossRefGoogle Scholar
  61. Ivanova E, Doronina N, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70(4):392–397CrossRefGoogle Scholar
  62. Ivanova E, Pirttilä A, Fedorov D, Doronina N, Trotsenko Y (2008) Association of methylotrophic bacteria with plants: metabolic aspects. In: Prospects and applications for plant associated microbes a laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 225–231Google Scholar
  63. Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265CrossRefGoogle Scholar
  64. James E, Reis V, Olivares F, Baldani J, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45(6):757–766CrossRefGoogle Scholar
  65. Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan E (2014) Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol 117(3):786–799PubMedCrossRefGoogle Scholar
  66. Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58(1):179–188PubMedCrossRefGoogle Scholar
  67. Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98PubMedCrossRefGoogle Scholar
  68. Kang SH, Cho H, Cheong H, Ryu C, Kim JF, Park S (2007) Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J Microbiol Biotechnol 17(1):96–103PubMedGoogle Scholar
  69. Khalid A, Akhtar M, Mahmood M, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75(2):231–236CrossRefGoogle Scholar
  70. Khan AA, Jilani G, Akhtar MS, Naqvi SS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58Google Scholar
  71. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44CrossRefGoogle Scholar
  72. Kluepfel DA (1993) The behavior and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 31(1):441–472CrossRefGoogle Scholar
  73. Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Microbial endophytes. Dekker, New York, pp 199–233Google Scholar
  74. Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol 47(5):436–439PubMedCrossRefGoogle Scholar
  75. Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC (2011) Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J Microbiol Biotechnol 27(7):1625–1632CrossRefGoogle Scholar
  76. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014a) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64(2):741–751CrossRefGoogle Scholar
  77. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014b) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev. http://dx.doi.org/10.4172/ijbbd.1000127
  78. Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biotechnological potential in agrobiology system. In: Bacteria in agrobiology: crop productivity. Springer, Berlin Heidelberg, pp 1–44CrossRefGoogle Scholar
  79. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973PubMedCrossRefGoogle Scholar
  80. Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23(4):565–572CrossRefGoogle Scholar
  81. Lee SO, Choi GJ, Choi YH, Jang KS, Park D-J, Kim C-J, Kim J-C (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18(11):1741–1746PubMedGoogle Scholar
  82. Li G, Dong Q, Ma L, Huang Y, Zhu M, Ji Y, Wang Q, Mo M, Zhang K (2014) Management of Meloidogyne incognita on tomato with endophytic bacteria and fresh residue of Wasabia japonica. J Appl Microbiol 117(4):1159–1167PubMedCrossRefGoogle Scholar
  83. Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67(2):209–217PubMedCrossRefGoogle Scholar
  84. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618PubMedCrossRefGoogle Scholar
  85. Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606CrossRefGoogle Scholar
  86. Magnani G, Didonet C, Cruz L, Picheth C, Pedrosa F, Souza E (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9(1):250–258PubMedCrossRefGoogle Scholar
  87. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60(1):157–166PubMedCrossRefGoogle Scholar
  88. Matsumura E, Secco V, Moreira R, dos Santos O, Hungria M, de Oliveira A (2015) Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Ann Microbiol. doi: 10.1007/s13213-015-1059-4 Google Scholar
  89. Mcinroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173(2):337–342CrossRefGoogle Scholar
  90. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267PubMedCentralPubMedCrossRefGoogle Scholar
  91. Mercado-Blanco J (2015) Life of microbes inside the plant. In: Principles of plant-microbe interactions. Springer International Publishing, Switzerland, pp 25–32Google Scholar
  92. Mercado-Blanco J, Lugtenberg JJB (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3(1):60–75CrossRefGoogle Scholar
  93. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30(1):271–280PubMedCrossRefGoogle Scholar
  94. Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28CrossRefGoogle Scholar
  95. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park K-D, Son CY, Sa T (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28(3):277–286PubMedCrossRefGoogle Scholar
  96. Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28(12):2229–2241Google Scholar
  97. Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296PubMedCrossRefGoogle Scholar
  98. Nath R, Sharma G, Barooah M (2013) Screening of endophytic bacterial isolates of Tea (Camellia sinensis L.) roots for their multiple plant growth promoting activities. Int J Agric Environ Biotechnol 6(2):211–215Google Scholar
  99. Natheer SE, Muthukkaruppan S (2012) Assessing the in vitro zinc solubilization potential and improving sugarcane growth by inoculating Gluconacetobacter diazotrophicus. Ann Microbiol 62(1):435–441CrossRefGoogle Scholar
  100. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118(8):683–694PubMedCrossRefGoogle Scholar
  101. Okubo T, Ikeda S, Kaneko T, Eda S, Mitsui H, Sato S, Tabata S, Minamisawa K (2009) Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans. Microbes Environ 24(3):253–258PubMedCrossRefGoogle Scholar
  102. Olivares FL, Baldani VL, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21(3):197–200CrossRefGoogle Scholar
  103. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125PubMedCrossRefGoogle Scholar
  104. Pageni BB, Lupwayi NZ, Larney FJ, Kawchuk LM, Gan Y (2013) Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 93(6):1125–1142CrossRefGoogle Scholar
  105. Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480PubMedCrossRefGoogle Scholar
  106. Park K-H, Lee O-M, Jung H-I, Jeong J-H, Jeon Y-D, Hwang D-Y, Lee C-Y, Son H-J (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86(3):947–955PubMedCrossRefGoogle Scholar
  107. Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56(1):43–49CrossRefGoogle Scholar
  108. Pedraza R (2015) Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Springer International Publishing, Switzerland, pp 251–262Google Scholar
  109. Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart RM, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz Arch Biol Technol 49(5):705–711CrossRefGoogle Scholar
  110. Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N (2015) Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 81(9):3049–3061PubMedCentralPubMedCrossRefGoogle Scholar
  111. Poonguzhali S, Madhaiyan M, Sa T (2006) Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286(1–2):167–180CrossRefGoogle Scholar
  112. Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66(3):389–401CrossRefGoogle Scholar
  113. Purnawati A (2014) Endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. J Trop Life Sci 4(1):33–36Google Scholar
  114. Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582CrossRefGoogle Scholar
  115. Quecine M, Lacava P, Magro S, Parra J, Araújo W, Azevedo J, Pizzirani Kleiner A (2011) Partial characterization of chitinolytic extract from endophytic Streptomyces sp. and its effects on the boll weevil. J Agric Sci Technol 5:420–427Google Scholar
  116. Quecine M, Araújo W, Rossetto P, Ferreira A, Tsui S, Lacava P, Mondin M, Azevedo J, Pizzirani-Kleiner A (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78(21):7511–7518PubMedCentralPubMedCrossRefGoogle Scholar
  117. Rado R, Andrianarisoa B, Ravelomanantsoa S, Rakotoarimanga N, Rahetlah V, Fienena F, Andriambeloson O (2015) Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. Afr J Food Agric Nutr Dev 15(1):9762–9776Google Scholar
  118. Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25(1):47–55CrossRefGoogle Scholar
  119. Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2014) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol. doi: 10.1007/s13213-014-0857-4 Google Scholar
  120. Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52(11):1036–1045PubMedCrossRefGoogle Scholar
  121. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224CrossRefGoogle Scholar
  122. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144PubMedCrossRefGoogle Scholar
  123. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68(5):2261–2268PubMedCentralPubMedCrossRefGoogle Scholar
  124. Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitsch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA-and 16S rRNA-based denaturating gradient gel electrophoresis. Plant Soil 257(2):397–405CrossRefGoogle Scholar
  125. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21(6):556–566PubMedGoogle Scholar
  126. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837PubMedCrossRefGoogle Scholar
  127. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9PubMedCrossRefGoogle Scholar
  128. Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116(2):155–160PubMedCrossRefGoogle Scholar
  129. Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55(1):74–81PubMedCrossRefGoogle Scholar
  130. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  131. Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798PubMedCrossRefGoogle Scholar
  132. Selvakumar G, Panneerselvam P, Ganeshamurthy A (2013) Legume root nodule associated bacteria. In: Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 215–232CrossRefGoogle Scholar
  133. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249PubMedCrossRefGoogle Scholar
  134. Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170PubMedCrossRefGoogle Scholar
  135. Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 147–167CrossRefGoogle Scholar
  136. Stella M, Halimi M (2015) Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes. J Trop Agric Food Sci 43(1):41–53Google Scholar
  137. Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. Microbial Endophytes 3:29–33Google Scholar
  138. Sturz A (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175(2):257–263CrossRefGoogle Scholar
  139. Sturz A, Christie B, Matheson B (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44(2):162–167CrossRefGoogle Scholar
  140. Suman A, Solomon S, Yadav DV, Gaur A, Singh M (2000) Post-harvest loss in sugarcane quality due to endophytic microorganisms. Sugar Tech 2(4):21–25CrossRefGoogle Scholar
  141. Suman A, Shasany AK, Singh M, Shahi HN, Gaur A, Khanuja SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17(1):39–45CrossRefGoogle Scholar
  142. Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47(2–3):155–162CrossRefGoogle Scholar
  143. Suman A, Shrivastava AK, Gaur A, Singh P, Singh J, Yadav RL (2008) Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regul 54(1):1–11CrossRefGoogle Scholar
  144. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55(3):415–424PubMedCrossRefGoogle Scholar
  145. Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305–313CrossRefGoogle Scholar
  146. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4(1):26PubMedCentralPubMedCrossRefGoogle Scholar
  147. Tam HM, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in sugarcane (Saccharum spp. L.) cultivated on soils of the Dong Nai province, Southeast of Vietnam. Am J Life Sci 2(6):361–368CrossRefGoogle Scholar
  148. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599PubMedCrossRefGoogle Scholar
  149. Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30(2):719–725PubMedCrossRefGoogle Scholar
  150. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356(1–2):35–49CrossRefGoogle Scholar
  151. Thanh DTN, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. Am J Life Sci 2(4):224–233CrossRefGoogle Scholar
  152. Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W, Zhou S (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20(3):303–309CrossRefGoogle Scholar
  153. Tian X, Cao L, Tan H, Han W, Chen M, Liu Y, Zhou S (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53(4):700–707PubMedCrossRefGoogle Scholar
  154. Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Nautiyal CS, Mittal S, Tripathi A, Johri B (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(1):136–150Google Scholar
  155. Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48(5):559–565PubMedCrossRefGoogle Scholar
  156. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10(2):219–226Google Scholar
  157. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3(5):432–447Google Scholar
  158. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2015a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol (in press)Google Scholar
  159. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015b) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol. doi: 10.1007/s13213-014-1027-4 Google Scholar
  160. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. doi: 10.1186/1471-2180-9-174 PubMedCentralPubMedGoogle Scholar
  161. Wei C-Y, Lin L, Luo L-J, Xing Y-X, Hu C-J, Yang L-T, Li Y-R, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50(4):657–666CrossRefGoogle Scholar
  162. White JF Jr, Torres MS, Johnson H, Irizarry I, Tadych M (2014) A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In: Advances in endophytic research. Springer, India, pp 425–439CrossRefGoogle Scholar
  163. Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 30(3):835–845PubMedCrossRefGoogle Scholar
  164. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. PhD thesis (IARI/Birla Institute of Technology, Mesra, Ranchi), p 234Google Scholar
  165. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol (in Press).Google Scholar
  166. Yadav AN, Sachan SG, Verma P, Saxena AK (2015b) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693PubMedCrossRefGoogle Scholar
  167. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015c) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31(1):95–108PubMedCrossRefGoogle Scholar
  168. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015d) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293. doi: 10.1038/srep12293 PubMedCentralPubMedCrossRefGoogle Scholar
  169. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015e) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 62(2):611–629CrossRefGoogle Scholar
  170. Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek. doi: 10.1007/s10482-015-0445-z PubMedGoogle Scholar
  171. Yang JW, Yu SH, Ryu C-M (2009) Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol J 25(4):389–399CrossRefGoogle Scholar
  172. Yanni Y, Dazzo F, Zidan M (2011) Beneficial endophytic rhizobia as biofertilizer inoculants for rice and the spatial ecology of this bacteria–plant association. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin Heidelberg, pp 265–294CrossRefGoogle Scholar
  173. Yashiro E, Spear R, McManus P (2011) Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110(5):1284–1296PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Archna Suman
    • 1
  • Ajar Nath Yadav
    • 1
  • Priyanka Verma
    • 1
  1. 1.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations