Skip to main content

Microbial Inoculants: Identification, Characterization, and Applications in the Field

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Microorganisms play a very important role in recycling of nutrients and organic compounds. They are also involved in improving structure and fertility of soils and managing plant health and ecosystem functioning. Microbes show interactions with plants, animals, and soils, working sometimes as pathogens while sometimes for mutual benefits.

Currently very advanced biochemical, microbial, and molecular tools and techniques have been developed which provide accurate, rapid methods for determining microbial diversity in any ecosystem. About 99 % of the microbes in the environment are non-culturable; therefore, much more efforts are required to make them culturable and then identifiable.

Microorganisms are potentially useful for accelerating plant growth and increasing crop yields. It has been observed that significant numbers of microbial species, usually associated with the plant rhizosphere, are able to exert a beneficial effect upon the growth of plant.

They possess inevitable role in nutrient supply (N2 fixation, P solubilization, IAA production, etc.) or biocontrol mechanism. In field, the beneficial effects of microbial inoculants has been proved by various researchers. In this chapter, various approaches employed in identification and characterization of culturable microbes, their various plant growth-promoting features, and role as bioinoculants have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszadegan M (2004) Microbial detection methodologies. Southwest Hydrol 18–19

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbial Res 163(2):173–181

    Article  CAS  Google Scholar 

  • Alves MH, Campos-Takaki GM, Porto ALF, Milanez AI (2002) Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz J Microbiol 33:325–330

    CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1991) Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense. Plant Soil 137:99–103

    Article  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Burr TJ, Caesar AM, Schrolh N (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2(1):1–20

    Article  Google Scholar 

  • Çakmakçi R, Dönmezc F, Aydınd A, Şahinb F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  Google Scholar 

  • Caracciolo AB, Bottoni P, Grenni P (2010) Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol Environ Chem 92:567–579

    Article  CAS  Google Scholar 

  • Carriço JA, Sabat AJ, Friedrich AW, Ramirez M (2013) Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution. Euro Surveill 18(4): 20382

    Google Scholar 

  • Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of non ribosomal peptide synthetases. ChemBioChem 6(4):601–611

    Article  CAS  PubMed  Google Scholar 

  • Christiansen-Weneger C (1992) N2-fixation by ammonium-excreting Azospirillum brasilense in auxin-induced tumours of wheat (Triticum aestivum L.). Biol Fertil Soils 12:85–100

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook AE, Meyers PR (2003) Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53:1907

    Article  CAS  PubMed  Google Scholar 

  • Davinson J (1988) Plant beneficial bacteria. Bio/Technology 6:282–286

    Article  Google Scholar 

  • Daza A, Santamarı́a C, Rodrı́guez-Navarro DN, Camacho M, Orive R, Temprano F (2000) Perlite as a carrier for bacterial inoculants. Soil Biol Biochem 32:567–572

    Article  CAS  Google Scholar 

  • Derry AM, Staddon WJ, Kevan PG, Trevors JT (1999) Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Biodivers Conserv 8:205–221

    Article  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Book  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2005) Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168(1):94–99

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Fang H, Xu J, Ding D, Jackson SA, Patel IR, Frye JG, Zou W, Nayak R, Foley S, Chen J, Su Z, Ye Y, Turner S, Harris S, Zhou G, Cerniglia C, Tong W (2010) An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinf 11(6):S4

    Article  Google Scholar 

  • Farzana Y, Saad ROS, Kamaruzaman S (2009) Growth and storage root development of Sweet potato inoculated with rhizobacteria under glasshouse conditions. Aust J Basic Appl Sci 3(2):1461–1466

    CAS  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franklin RB, Taylor DR, Mills AL (1999) Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J Microbiol Methods 35:225–235

    Article  CAS  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57(8):2351–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaur AC, Ostwal KP (1972) Influence of phosphate dissolving Bacilli on yield and phosphate uptake of wheat crop. Indian J Exp Biol 10:393–394

    CAS  Google Scholar 

  • Ghazanfar S, Azim A, Ghazanfar MA, Anjum MI, Begum I (2010) Metagenomics and its application in soil microbial community studies: biotechnological prospects. J Anim Plant Sci 6(2):611–622

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Graham PH (1998) Biological dinitrogen fixation: symbiotic. In: Sylvia DM, Hartel P, Fuhrmann J, Zuberer D (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 322–345

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Griffiths RI, Whiteley ADS, O’Donnell AG, Bailey MJ (2000) Rapid method for co-extraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haas D, Blumer C, Keel C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr Opin Biotechnol 11:290–297

    Article  CAS  PubMed  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Hanada S (2003) Filamentous anoxygenic phototrophs in hot springs. Microbes Environ 18:51–61

    Article  Google Scholar 

  • Heydari S, Moghadam PR, Arab SM (2008) Hydrogen cyanide production ability by Pseudomonas Fluorescence bacteria and their inhibition potential on weed. In: Proceedings “Competition for Resources in a Changing World: New Drive for Rural Development”, Tropentag, Hohenheim, 7–9 October 2008

    Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2): reviews 0003.1 - 0003.8

    Article  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67(10):4399–4406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamagata Y, Tamaki H (2005) Cultivation of uncultured fastidious microbes. Microbes Environ 20:85–91

    Article  Google Scholar 

  • Kelly JJ, Haggblom M, Tate RL III (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465

    Article  CAS  Google Scholar 

  • Kirka JL, Beaudettea LA, Hartb M, Moutoglisc P, Klironomosb JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  Google Scholar 

  • Kloepper JW (1994) Plant growth promoting bacteria (other systems). In: Okon J (ed) Azospirillum/plant association. CRC Press, Boca Raton, pp 137–154

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie vegetale et Phyto-bacteriologie (ed) Proceedings of the 4th international conference on plant pathogenic bacteria, vol II. Tours, Gilbert-Clary, pp 879–882

    Google Scholar 

  • Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Krasilnikov M (1961) On the role of soil bacteria in plant nutrition. J Gen Appl Microbiol 7:128–144

    Article  Google Scholar 

  • Laurent F, Provost F, Boiron P (1999) Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J Clin Microbiol 37:99–102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–208

    Article  CAS  Google Scholar 

  • Li T, Wu TD, Mazéas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley-Interscience, Chichester

    Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel M (2007) Siderophore-based iron acquistion and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) A comparison of fluorescently-labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68:661–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranjard L et al (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I et al (eds) Microbes and microbial technology: agricultural and environmental applications. Springer New York, pp 29–58

    Chapter  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazqueze E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287(1–2):23–33

    Article  CAS  Google Scholar 

  • Roesti D, Gaurb R, Johrib BN, Imfelda G, Sharmab S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Rovira AD (1965) Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19:241–266

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacterial systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Tilak KVBR (1998) Free-living nitrogen fixers: its role in crop production. In: Verma AK (ed) Microbes for health, wealth and sustainable environment. Malhotra Publ Co, New Delhi, pp 25–64

    Google Scholar 

  • Schippers B, Bakker A, Bakker P, van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129(1):75–83

    Article  CAS  Google Scholar 

  • Schwintzer R, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants. Academic Press Inc, San Diego, p 99

    Google Scholar 

  • Sekiguchi Y (2006) Yet-to-be cultural microorganisms relevant to methane fermentation processes. Microbes Environ 21:1–15

    Article  Google Scholar 

  • Shahi SK, Rai AK, Tyagi MB, Sinha RP, Kumar A (2011) Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features. Afr J Biotechnol 10(42):8296–8305

    CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Biolog analysis and fatty acid methyl ester profiles indicate that Pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biol Biochem 30:1717–1723

    Article  CAS  Google Scholar 

  • Singh DP, Prabha R, Rai A, Arora DK (2012) Bioinformatics-assisted microbiological research: tasks, developments and upcoming challenges. Am J Bioinforma 1(1):10–19

    Article  Google Scholar 

  • Sivan A, Chet I (1992) Microbial control of plant diseases. In: Mitchell R (ed) Environmental microbiology. Wiley-Liss, New York, pp 335–354

    Google Scholar 

  • Sjöling S, Cowan DA (2003) High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7(4):275–282

    Article  PubMed  Google Scholar 

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  PubMed  Google Scholar 

  • Steingrube VA, Wilson RW, Brown BA, Jost KC Jr, Blacklock Z, Gibson JL, Wallace RJ Jr (1997) Rapid identification of the clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J Clin Microbiol 35:817–822

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crop Res 65:249–258

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Suslov TV (1982) Role of root-colonizing bacteria in plant growth. In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes. Academic, London, pp 187–223

    Chapter  Google Scholar 

  • Suslow TV, Schroth MN (1982) Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. J Phytopathol 72(1):111–115

    Article  Google Scholar 

  • Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176

    CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(Suppl 1):136–150

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson WH, Turner S, Mann NH (1998) Population dynamics of phytoplankton and viruses in a phosphate limited mesocosm and their effect on DMSP and DMS production. Estuar Coast Shelf Sci 46(A):49–59

    Article  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731

    Article  CAS  PubMed  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 43–86

    Google Scholar 

  • Zeller SL, Brand H, Schmid B (2007) Host-plant selectivity of rhizobacteria in a crop/weed model system. Plos One 2(9):846

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the National Agricultural Bioinformatics Grid project funded by the National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Rai, A.K., Singh, D.P., Prabha, R., Kumar, M., Sharma, L. (2016). Microbial Inoculants: Identification, Characterization, and Applications in the Field. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_6

Download citation

Publish with us

Policies and ethics