Skip to main content

Role of Microbial Inoculants in Nutrient Use Efficiency

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Since microbial inoculants have the ability to promote plant growth, nutrient enrichment, uptake, and support plant health, they are designated as a promising part of integrated solutions to agro-environmental problems. Inoculations with microbial consortia or plant-growth-promoting bacteria have been shown to enhance nutrient use efficiency, that is, mainly phosphorus, nitrogen, and carbon. It is generally believed that the huge diversity of the microbial communities associated with the rhizoplane in the rhizosphere and phylloplane helps plants to acquire minerals, organic substances, and many other small-molecule metabolites including amino acids, phytohormones, etc., to improve plant productivity. The interaction between microbes and plants has been shown to improve plant growth and impart biological control against biotic and abiotic stresses and work silently to improve the biogeochemical cycle in the natural ecosystem. Enhanced nutrient use efficiency benefits the plant by induction in seed germination, plant yield, and more uptake of nutrients along with enhancement in plant height and effective biocontrol. In this chapter, the effect of microbes and microbial inoculants in the enhancement of nutrient use efficiency is elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Allison SD (2014) Modeling adaptation of CUE in microbial communities. Front Microbiol 5:1–9

    Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2006) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Anguilar C (1998) Impact on arbuscular mycorrhiza formulation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barlog P, Grzebisz W (2004) Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J Agron Crop Sci 190:314–323

    Article  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relations: physiological, molecular, agricultural and environmental advances. Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health : perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi:10.1186/1475-2859-13-66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi YM, Kant S, Clark J, Gidda S, Ming GF et al (2009) Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ 32:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Blagodatsky S, Anderson T-H, Kuzyakov Y (2014) Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS One 9(4), e93282. doi:10.1371/journal.pone.0093282

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi, and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    Article  CAS  PubMed  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing N-B, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68:3067–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259

    Article  Google Scholar 

  • Devevre OC, Horwath WR (2000) Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol Biochem 32:1773–1785

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Anguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dutta D, De D, Chaudhari S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Fattah QA (2005) Plant resources for human development. In: Third international botanical conference, Bangladesh Botanical Society, Dhaka, Bangladesh

    Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1:51–81

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability, and growth of egg plant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Hawkesford MJ, Barraclough P (2011) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell. ISBN 047096068X, 9780470960684

    Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Ivanova R, Bojinova D, Nedialkova K (2006) Rock phosphate solubilization by soil bacteria. J Univ Chem Technol Metall 41:297–302

    CAS  Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts–or just soil free-riders? Front Plant Sci 4:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Kivi MP, Hokmalipour S, Darbandi MH (2014) Nitrogen and phosphorus use efficiency of spring wheat (Triticum aestivum L.) as affected by seed inoculation with plant growth promoting rhizobacteria (PGPR). Int J Adv Biol Biomed Res 2(4):1038–1050

    Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  • Mahaffee WF, Kloepper JW (1994) Applications of plant growth promoting rhizobacteria in sustainable agriculture. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Melbourne, pp 23–31

    Google Scholar 

  • Majengo CO, Okalebo JR, Lesueur D, Pypers P, Ng’etich W, Mutegi E, Mburu MW, Musyoki M (2011) Interaction between nitrogen and phosphorus microbial inoculants on soybean production in Bungoma, Kenya. Afr Crop Sci Conf Proc 10:121–123

    Google Scholar 

  • Manjunath MN, Patil PL, Gali SK (2006) Effect of organics amended rock phosphate and P solubilizer on P use efficiency of french bean in a vertisol of malaprabha right bank command of Karnataka. Karnataka J Agric Sci 19:36–39

    Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

    Article  CAS  PubMed  Google Scholar 

  • Margheri MC, Tredici MR, Allotta G, Vagnoli L (1991) Heterotrophic metabolism regulation of uptake hydrogenase activity in symbiotic cyanobacteria. In: Polsinelli M, Materassi R, Dordretch VM (eds) Developments in plant and soil sciences-bio nitrogen fixation. Kluwer Academic Publications, Netherlands, pp 481–486

    Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brucken B, Kastner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:45–55

    Article  Google Scholar 

  • Mooshammer M, Wanek W, Hammerle I, Fuschslueger L et al (2014) Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nat Commun. doi:10.1038/ncomms4694

    PubMed  PubMed Central  Google Scholar 

  • Nie M, Bell C, Wallenstein MD, Pendall E (2014) Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Sci Rep. doi:10.1038/srep09212

    Google Scholar 

  • Parr JF, Hornick SB, Kaufman DD (1994) Use of microbial inoculants and organic fertilizers in agricultural production. In: Proceedings of the international seminar on the use of microbial and organic fertilizers in agricultural production. Published by the Food and Fertilizer Technology Center, Taipei, Taiwan

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martínez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2011) Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J Microbiol Biotechnol. doi:10.1007/s11274-011-0926-9

    Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabalais NN, Turner RE, Wiseman WJ Jr, Dortch Q (1998) Consequences of the 1993 Mississippi River flood in the Gulf of Mexico. Regul Rivers Res Manage 14:161–177

    Article  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Sánchez PA (2010) Tripling crop yields in tropical Africa. Nat Geosci 3:299–300

    Article  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Setiawati TC, Handayanto E (2010) Role of phosphate solubilising bacteria on availability phosphorus in Oxisols and tracing of phosphate in corn by using 32P. In: 19th world congress of soil science, Soil Solutions for a Changing World, Brisbane, Australia

    Google Scholar 

  • Shimizu K (2013) Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism. ISRN Biochem 645983

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modeling. Ecol Lett. doi:10.1111/ele.12113

    PubMed  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contribution to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. Fed Eur Mat Soc Microbiol Ecol 54:131–140

    CAS  Google Scholar 

  • Steinweg JM, Plante AF, Conant RT, Paul EA, Tanaka DL (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40:2722–2728

    Article  CAS  Google Scholar 

  • Syiem MB (2005) Entrapped cyanobacteria: implications for biotechnology. Indian J Biotechnol 4:209–215

    CAS  Google Scholar 

  • Tajini F, Trabelsi M, Drevon J-J (2011) Co-inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases P use efficiency for N2 fixation in the common bean (Phaseolus vulgaris L.) under P deficiency in hydroaeroponic culture. Symbiosis 53(3):123–129

    Article  CAS  Google Scholar 

  • Takriti M, Wild B, Schnecker J, Mooshammer M, Knoltsch et al. (2014) Substrate use efficiency of microbial communities along a latitudinal transect through western Siberia. Geogr Res Abstr 16: EGU2014-15031

    Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–212

    Article  CAS  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • Tunney H, Carton OT, Brookes PC, Johnston AE (1997) Phosphorus loss from soil to water. CAB International, Oxford

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat EducKnowl 3:15

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjaya Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kumar, M., Singh, D.P., Prabha, R., Rai, A.K., Sharma, L. (2016). Role of Microbial Inoculants in Nutrient Use Efficiency. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_9

Download citation

Publish with us

Policies and ethics