Skip to main content

Delivery Systems for Introduction of Microbial Inoculants in the Field

Abstract

Undoubtedly choosing correct microbial inoculants is the foremost factor governing the success of a biocontrol program. But making it reach to the field with a suitable delivery method maintaining consistent performance is the next most important challenge. Microbial inoculants are delivered through several means based on the survival nature and mode of infection of the pathogens. These bioagents cannot be applied as spore suspension in field but are applied as powdered or liquid formulation primarily through seed treatment, soil application, root dip, or foliar application. Application of microbial inoculants can influence, at least temporarily, the resident microbial communities and offer protection against a wide range of pathogens. The biocontrol agent applied through different delivery methods multiplies in the soil and remains near the root zone of plants and offers protection even at later stages of crop growth. In this chapter, we have discussed about various microbial bioformulations commercially available and their mode of application in the field. Along with conventional methods of delivery system, other methods such as microbigation, seed biopriming, seed encapsulation, fluid drilling, and consortia method of application are discussed with recent research updates.

Keywords

  • Microbes
  • Inoculants
  • Seed treatment
  • Biopriming
  • Microbigation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-2644-4_13
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-2644-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  • Aeron A, Dubey RC, Maheshwari DK, Pandey P, Bajpai VK, Kang SC (2011) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur J Plant Pathol 131:81–93

    CrossRef  Google Scholar 

  • Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of Fusarium wilts. Pestic Sci 37:363–373

    CrossRef  Google Scholar 

  • Alves RT, Bateman RP (2013) Evaluation of formulation and volume application rate on the secondary pick-up of Metarhizium acridium (Driver and Milner) Bischoff, Rehner and Humber conidia on Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). Bioassay 8(4):1–6

    Google Scholar 

  • Bahadur A, Singh UP, Sarma BK, Singh DP, Singh KP, Singh A (2007) Foliar application of plant growth-promoting rhizobacteria increases antifungal compounds in pea (Pisum sativum) against Erysiphe pisi. Microbiology 35(3):129–134

    CAS  Google Scholar 

  • Bankole SA, Adebanjo A (1998) Efficacy of some fungal and bacterial isolates in controlling wet rot disease of cowpea caused by Pythium aphanidermatum. J Plant Prot Trop 11:37–43

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729

    CAS  CrossRef  Google Scholar 

  • Bashan Y, Reem Y, Levanony H, Sade A (1984) Non specific response in plant growth, yield and root colonization on noncereal crop plants to inoculation with Azosprillium brasilense. Can J Bot 67:1317–1324

    CrossRef  Google Scholar 

  • Bateman RP, Matthews GA, Hall FR (2007) Ground based application equipment. In: Lacey LA, Kaya HK (eds) Field Manual of Techniques in Invertebrate Pathology. Springer, Dordrecht, pp 73–98

    CrossRef  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    CrossRef  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  CrossRef  PubMed  Google Scholar 

  • Boari A, Zuccari D, Vurro M (2008) ‘Microbigation’: delivery of biological control agents through drip irrigation systems. Irrig Sci 26:101–107

    CrossRef  Google Scholar 

  • Boari S, Josens R, Parisi DR (2013) Efficient egress of escaping ants stressed with temperature. PloS One 8(11):e81082

    Google Scholar 

  • Bougeu G, McBride BC (1976) Dextran-mediated interbacterial aggregation between dextran-synthesizing Strepcocci and Actinomyces viscosus. Infect Immun 13:1228–1234

    Google Scholar 

  • Boyetchko S, Pedersen E, Punja Z, Reddy M (1999) Formulations of biopesticides. In: Hall FR, Menn JJ (eds) Biopesticides: Use and delivery, Methods in Biotechnology: 5. Humana Press, Totowa, pp 487–508

    Google Scholar 

  • Brent KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: How can it be managed, 2nd edn, FRAC Monograph No. 1. Croplife International, Brussels

    Google Scholar 

  • Burelle NK (2000) Biological control of tomato diseases. In: Gnanamanickam SS (ed) Biological control of crop diseases. Markel Dekker Inc, New York. ISBN 0-8247-0693-5

    Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes, and seed treatments. Kluwer Academic, Dordrecht/Boston

    CrossRef  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Dis 74:368–372

    CrossRef  Google Scholar 

  • Chandra K, Greep S (2010) Liquid based bio-fertilizers. J Eco-Friend Agric 5(1):1–7

    CAS  Google Scholar 

  • Chandra K, Greep S, Ramarathinam S (2006) Bio efficacy of liquid formulation of Beauveria bassiana on Tea shoot hole borer Euwallacea fornicutus. In: Veeraragavatham D, Balakrishna Murthy G (eds) National seminar on convergence of technologies for organic horticulture, pp 58–61

    Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    CrossRef  Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Trichoderma and Gliocladium. In: Harman GE, Kubicek CP (eds) Mycoparasitism and Lytic Enzymes. Taylor and Francis, London, pp 153–172

    Google Scholar 

  • Cisar JO, Kolen Brander PE, Melnlme FC (1979) Specialty of coaggregation reactions between human oral Strepcocci and Actinomyces viscosus. Infect Immun 46:453

    Google Scholar 

  • Cliquet S, Scheffer RJ (1997) Influence of culture conditions on growth and survival of conidia of Trichoderma spp coated on seeds. Biocontrol Sci Technol 7:171–181

    CrossRef  Google Scholar 

  • Conway KE (1986) Use of fluid drilling gels to deliver biological control agents to soil. Plant Dis 70:835–839

    CrossRef  Google Scholar 

  • Connick WJ Jr, Daigle DJ, Quimby PC Jr (1991) An improved inert emulsion with high water retention for mycoherbicide delivery. Weed Technol 5:442–444

    CAS  Google Scholar 

  • Cook RJ, Baker KR (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St Paul

    Google Scholar 

  • Copping LG (1999) The biopesticide manual. BCPC, Farnham

    Google Scholar 

  • Crouch I, van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296

    CrossRef  Google Scholar 

  • Crump DH (1998) Biological control of potato and beet cyst nematodes. Asp Appl Biol 53:883–386

    Google Scholar 

  • Dawar S, Wahab S, Tariq M, Zaki MJ (2010) Application of Bacillus species in the control of root rot diseases of crop plants. Arch Phytopathol Plant Protect 43(4):412–418

    CrossRef  Google Scholar 

  • Desai S, Reddy MS, Kloepper JW (2000) Comprehensive testing of biological control. In: Gnanamanickam SS (ed) Biological control of crop diseases. Markel Dekker Inc, New York, 5pp. ISBN 0-8247-0693

    Google Scholar 

  • Digat B (1991) A new encapsulation technology for bacterial inoculants and seed bacterization, in Plant Growth-Promoting Rhizobacteria – Progress and Prespects, 2nd International Workshop on Plant Growth-Promoting Rhizobacteria, Interlaken, Switzerland, October 1990 (eds C Keel, B Koller and G Defago), International Union of Biological Sciences, WPRS Bulletin, 1991/XIV/8, pp 383–391

    Google Scholar 

  • Elad Y, Kirshner B (1992) Calcium reduces Botrytis cinerea damages to plants of Ruscus hypoglossum. Phytoparasitica 20:285–291

    CAS  CrossRef  Google Scholar 

  • El-Mougy NS, Abdel Kader MM (2008) Long term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens. Australas Plant Pathol 37:464–471

    CrossRef  Google Scholar 

  • Entesari M, Sharifzadeh F, Ahmadzadeh M, Farhangfar M (2013) Seed biopriming with Trichoderma species and Pseudomonas fluorescence on growth parameters, enzymes activity and nutritional status of soybean. Int J Agron Plant Prod 4(4):610–619

    Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107

    CrossRef  Google Scholar 

  • Filho AB, Alves AB, August NT, Pereira RM, Alves LFA (2001) Stability and persistence of two formulations containing Anticarsia gemmatalis Nuclear Polyhedrovirus (AgMNPV). J Neotrop Entomol 30:411–416

    CrossRef  Google Scholar 

  • Fisher CG, Conway KE, Motes JE (1983) Fluid drilling: A potential delivery system for fungal biological control agents with small seeded vegetables. Proc Okla Acad Sci 63:100–101

    Google Scholar 

  • Ganeshmoorthi P, Anand T, Prakasam V, Bharani M, Ragupathi N et al (2008) Plant growth promoting rhizobacteria (PGPR) bioconsortia mediates induction of defense related proteins against infection of root rot pathogen in mulberry plants. J Plant Interact 3:233–244

    CrossRef  Google Scholar 

  • Gasic S, Tanovic B (2013) Biopesticide formulations, possibility of application and future trends. Pestic Phytomed (Belgrade) 28(2):97–102

    CAS  CrossRef  Google Scholar 

  • Gibbons RJ, Nygard M (1970) Interbacterial aggregation of plaque bacteria. Arch Oral Biol 15:1317–1400

    CrossRef  Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Ann Phytopathol Soc Jpn 58:380–385

    CrossRef  Google Scholar 

  • Harvey LT (1991) A guide to agricultural spray adjuvants used in the United States. Thompson Publications, Fresno

    Google Scholar 

  • Hebber P, Berge O, Heulin T, Singh SP (1991) Bacterial antagonists of sunflower (Helianthus annuus L.) fungal pathogens. Plant Soil 133:131–140

    CrossRef  Google Scholar 

  • Jambhulkar PP, Sharma P (2013) Promotion of rice seedling growth characteristics by development and use of bioformulation of Pseudomonas fluorescens. Indian J Agric Sci 83(2):136–142

    Google Scholar 

  • Jambhulkar PP, Sharma P (2014) Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae). J Environ Biol 35(5):843–849

    CAS  PubMed  Google Scholar 

  • Jambhulkar PP, Sharma P, Meghwal ML (2015) Additive effect of soil application with Trichoderma enriched FYM along with seed treatment and drenching with Trichoderma formulation for management of wet root rot caused by Rhizoctonia solani in chickpea. J Pure Appl Microbiol 9(1):405–412

    CAS  Google Scholar 

  • Jeyalakshmi C, Madhiazhagan K, Rettinassababady C (2010) Effect of different methods of application of Pseudomonas fluorescens against bacterial leaf blight under direct sown rice. J Biopestic 3(2):487–488

    Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998) Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52:127–137

    CAS  CrossRef  Google Scholar 

  • Kelly Cartwright D (1995) Comparison of Pseudomonas species and application techniques for biocontrol of Rhizoctonia stem rot of Poinsettia. Plant Dis 79:309–313

    CrossRef  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74(1–3):65–76

    CrossRef  Google Scholar 

  • Khan A, Shad Khan K, Khan AZ, Marwat KB, Afzal A (2008) The role of seed priming in semi-arid area for mung bean phenology and yield. Pak J Bot 40(6):2471–2480

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induce systemic resistance and promotion plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  CrossRef  PubMed  Google Scholar 

  • Knowles A (2005) New developments in crop protection product formulation. (pp. 153–156). Agrow Reports UK: T and F Informa UK Ltd.

    Google Scholar 

  • Knowles A (2006) Adjuvants and additives. (pp. 126–129). Agrow Reports: T&F Informa UK Ltd.

    Google Scholar 

  • Kolenbrander PE, Phucus CS (1984) Effect of saliva and co-aggregation of oral Actinomycetes and Streptococcus species. Infect Immun 44:228–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni SA, Anahosur KH (1994) Effect of Age of Groundnut Plant to Infection of Sclerotium rolfsii Sacc A Causal Agent of Stem Rot Disease. Karnataka J Agric Sci 7:367–368

    Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Matamala-Garros A, Bakker PAHM, Schippers B (1996) Suppression of Fusarium wilt of radish by co-inoculation of fluorescent pseudomonas spp. and root colonizing fungi. Eur J Plant Pathol 102:21–31

    CrossRef  Google Scholar 

  • Lumsden RD, Lewis JA (1989) Selection, production, formulation and commercial use of plant disease biocontrol fungi : problems and progress. In: Whipps JM, Lumsden RD (eds) Biotechnology of Fungi for Improving Plant Growth. Cambridge University Press, Cambridge, pp 171–190

    Google Scholar 

  • Lumsden RD, Lewis JA, Fravel DR (1995) Formulation and delivery of biocontrol agents for use against soil borne plant pathogens. In: Hall FR, Barry JW (eds) Biorational Pest Control Agents. Formulation and Delivery, ACS Symposium Series 595. ACS, Washington, DC, pp 166–182

    CrossRef  Google Scholar 

  • McQuilken MP, Halmer P, Rhodes DJ (1998) Application of microorganisms to seeds. In: Burges HD (ed) Formulation of microbial biopesticides: Beneficial microorganisms, nematodes and seed treatments. Kluwer Academic, Dordrecht

    Google Scholar 

  • Meena B (2014) Biological control of pest and diseases using fluorescent pseudomonads. In: Sahayaraj K (ed) Basic and Applied Aspects of Biopesticides. Springer, New Delhi, pp 17–29. doi:10.1007/978-81-322-1877-7-2

    Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant parasitic nematodes and soilborne plant pathogenic fungi. J Nematol 34:1–8

    PubMed  PubMed Central  Google Scholar 

  • Miranda MVC (2012) Effect of microbial inoculants on biocontrol and plant growth promotions. Thesis submitted to The Ohio State University

    Google Scholar 

  • Moeinzadeh A, Zadeh FS, Ahmadzadeh M, Tajabadi FH (2010) Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 4(7):564–570

    Google Scholar 

  • Mohiddin FA, Khan MR, Khan SM (2010) Why Trichoderma is considered super hero (super fungus) against the evil parasites?”. Plant Pathol J 9:1–11

    CrossRef  Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–410

    CAS  CrossRef  PubMed  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Samiyappan R (2001) Induction of systemic resistance in rice against sheath blight diseases by plant growth promoting rhizobacteria. Soil Biol Biochem 33:603–612

    CAS  CrossRef  Google Scholar 

  • Nayaka SC, Niranjana SR, Uday Shankar AC, Niranjan Raj S, Reddy MS, Prakash HS, Mortensen CN (2008) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathology Plant Protect 41:1–19

    CrossRef  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Niranjana SR, Lalitha S, Hariprasad P (2009) Mass multiplication and formulations of biocontrol agents for use against fusarium wilt of pigeonpea through seed treatment. Int J Pest Manag 55(4):317–324

    CrossRef  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    CAS  CrossRef  PubMed  Google Scholar 

  • Pill WG (1991) Advances in fluid drilling. Hort Technology Oct/Dec. 59–65.

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizosphere. Biochemistry and Organic Substances at the Soil-Plant Interface. Marcel Dekker, New York, pp 1–17

    Google Scholar 

  • Prathuangwong S, Athinuwat D, Chuaboon W, Chatnaparat T, Buensanteai N (2013) Bioformulation Pseudomonas fluorescens SP007s against dirty panicle disease of rice. Afr J Microbiol Res 7(47):5274–5283

    Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Prot 15:715–721

    CrossRef  Google Scholar 

  • Ramanujam B, Prasad RD, Sriram S, Rangeswaran R (2010) Mass production, formulation, quality control and delivery of Trichoderma for plant disease management. J Plant Protect Sci 2(2):1–8

    Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    CAS  CrossRef  PubMed  Google Scholar 

  • Reisser W (2010) The future is green: on the biotechnological potential of green algae. Springer, Dordrecht

    Google Scholar 

  • Rekha PD, Lai WA, Arun AB, Young CC (2007) Effect of free and encapsulated Pseudomonas putida. CC-FR 2-4 and Bacillus subtilis CC-pg 104 on plant growth under gnotobiotic conditions. Bioresour Technol 98:447–451

    CAS  CrossRef  PubMed  Google Scholar 

  • Roberts DP, Scott M, Lohrke S, Meyer LF, Jeffrey S, Buyer JH, Bowers CJ, Baker WL, de Jorge T, Souza JAL, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:141–155

    CrossRef  Google Scholar 

  • Schisler DA et al (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    CAS  CrossRef  PubMed  Google Scholar 

  • Sesan T, N Csep (1992) Prevention of white rot (Sclerotinia sclerotiorum) of sunflower and soybean by the biological control agent Coniothyrium minitans. International Organization for Biological and Integrated Control for Noxious Animals and Plants, West Palearctic Region Section 15: 60 – 63

    Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–340

    CAS  CrossRef  PubMed  Google Scholar 

  • Singh U S, Zaidi N W (2002) Current Status of formulation and delivery of fungal and bacterial antagonists for disease management in India, pp 168–179. In Microbial Biopesticide Formulations and Application (Eds Rabindra RJ Hussaini SS Ramanujam B) Project Directorate of Biological Control, Bangalore 269 pp.

    Google Scholar 

  • Sivakumar PK, Joe MM (2008) Development of co-aggregated cells as bioinoculants using plant seed powders-A novel delivery system for rice grown under lowland condition. Agric Conspec Sci 73(4):253–257

    Google Scholar 

  • Sivakumar PK, Parthasarthi R, Lakshmipriya VP (2014) Encapsulation of plant growth promoting inoculant in bacterial alginate beads enriched with humic acid. Int J Curr Microbiol App Sci 3(6):415–422

    Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2012) Consortial effect of endophytic and plant growth promoting rhizobacteria for the Management of Early Blight of Tomato Incited by Alternaria Solani. J Plant Pathol Microbiol 3:145

    CrossRef  Google Scholar 

  • Ting ASY, Fang MT, Tee CS (2010) An in vitro assessment on the efficacy of clay-based formulated cells of Pseudomonas isolate UTAR EPA2 for Petrol Degradation. Am J Appl Sci 7(2):178–184

    CAS  CrossRef  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International, Article ID 863240, http://dx.doi.org/10.1155/2013/863240

  • Van Veen AJ, Van LS, Van Eles JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–133

    PubMed  PubMed Central  Google Scholar 

  • Vasudevan P, Gnanamanickam S S (2000) Progress and prospects for biological suppression of rice diseases with bacterial antagonists. Biological control and plant growth promoting rhizobacteria (PGPR) for sustainable agriculture, Hyderabad, India, April 3–4

    Google Scholar 

  • Verma KK (2009) Management of Meloidogyne javanica by bacterial antagonist Pseudomonas fluorescens as seedling root dip in tomato. Indian J Nematol 39(2):207–210

    Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    CrossRef  Google Scholar 

  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K (1997) Development of powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol 46:291–297

    CrossRef  Google Scholar 

  • Warren JE, Bennett MA (1999) Bio-osmopriming tomato Lycopersicon esculentum Mill. seeds for improved stand establishment. Seed Sci Technol 27:489–499

    Google Scholar 

  • Warrior P, Konduru K, Vasudevan P (2002) Formulation of biological control agents for pest and disease management. In: Gnanamanickam SS (ed) Biological control of crop diseases. Markel Dekker Inc, New York, 5pp. ISBN 0-8247-0693

    Google Scholar 

  • Weller D (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 Years. Phytopathology 97:250

    CrossRef  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  CrossRef  PubMed  Google Scholar 

  • Weststeijn WA (1990) Fluorescent pseudomonads isolate E11-2 as biological agent for Pythium root rot in tulips. Neth J Plant Pathol 96:262–272

    CrossRef  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress problems and potential. CABI Publishing, Wallingford

    Google Scholar 

  • Witter L (1996) Immobilized microbial cells. In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical chemistry of food processes. Van Nostrand Reinhold, New York, pp 475–486

    Google Scholar 

  • Woods TS (2003) Pesticide formulations. In: AGR 185 in encyclopedia of agrochemicals. Wiley, New York, pp 1–11

    Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    CAS  CrossRef  PubMed  Google Scholar 

  • Young CC, Rekha PD, Lai WA, Arun AB (2006) Encapsulation of plant growth promoting bacteria in alginate enriched with humic acid. Biotechnol Bioeng 95(1):76–83

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant P. Jambhulkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Jambhulkar, P.P., Sharma, P., Yadav, R. (2016). Delivery Systems for Introduction of Microbial Inoculants in the Field. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_13

Download citation