Advertisement

Reducing Inter-Scanner Variability in Multi-site fMRI Activations Using Correction Functions: A Preliminary Study

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 390)

Abstract

In the past decade, there has been an exponential growth in brain mapping studies using Functional MRI (fMRI). The need for more data to increase the statistical power of brain mapping studies made the researchers look at multi-center studies. But a major limitation in pooling data from multiple sites is the diversity in acquisition and analysis methods that effect the imaging results. This preliminary study aims at finding correcting functions to reduce the variability of activation maps produced using fMRI for a particular task at different sites. Having explored corrections based on ordinary least squares (OLS) and robust estimation methods, we found that even simple linear correction functions produced reasonable reduction in variability of activation maps across sites.

Keywords

Multi-center Multi-site fMRI Inter-scanner Variability Correction functions 

Notes

Acknowledgments

Some of the data used in this study was acquired through and provided by the Biomedical Informatics Research Network under the following support: U24-RR021992, Function BIRN and U24 GM104203, Bio-Informatics Research Network Coordinating Center (BIRN-CC).

References

  1. 1.
    Costafreda, S.G.: Pooling fMRI data: meta-analysis, mega-analysis and multi-center studies. Front. Neuroinf. 3, 33 (2009). http://www.frontiersin.org/neuroinformatics/10.3389/neuro.11/033.2009/abstract
  2. 2.
    Cox, R.W.: Afni: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173 (1996)CrossRefGoogle Scholar
  3. 3.
    Friedman, L., Glover, G.H., Krenz, D., Magnotta, V.: Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. NeuroImage 32(4), 1656–1668 (Oct 2006). http://www.sciencedirect.com/science/article/pii/S1053811906004435
  4. 4.
    Friedman, L., Glover, G.H., The FBIRN Consortium: Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. NeuroImage 33(2), 471–481 (Nov 2006). http://www.sciencedirect.com/science/article/pii/S1053811906007944
  5. 5.
    Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., Potkin, S.G.: Test-retest and between-site reliability in a multicenter fMRI study. Hum. Brain Mapp. 29(8), 958–972 (Aug 2008). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670112/
  6. 6.
    Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S.: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinf. 5 (2011)Google Scholar
  7. 7.
    Gountouna, V.E., Job, D.E., McIntosh, A.M., Moorhead, T.W.J., Lymer, G.K.L., Whalley, H.C., Hall, J., Waiter, G.D., Brennan, D., McGonigle, D.J., Ahearn, T.S., Cavanagh, J., Condon, B., Hadley, D.M., Marshall, I., Murray, A.D., Steele, J.D., Wardlaw, J.M., Lawrie, S.M.: Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. NeuroImage 49(1), 552–560 (Jan 2010). http://www.sciencedirect.com/science/article/pii/S1053811909007988
  8. 8.
    Kelemen, A., Liang, Y.: Multi-center correction functions for magnetization transfer ratios of mri scans. J. Health Med. Inf. 0(0)Google Scholar
  9. 9.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)Google Scholar
  10. 10.
    Worsley, K.J., Friston, K.J.: Analysis of FMRI time-series revisited again. Neuroimage 2(3), 173–181 (1995)CrossRefGoogle Scholar
  11. 11.
    Worsley, K., Liao, C., Aston, J., Petre, V., Duncan, G., Morales, F., Evans, A.: A general statistical analysis for fMRI data 15(1), 1–15 (2002). http://www.sciencedirect.com/science/article/pii/S1053811901909334
  12. 12.
    Zou, K.H., Greve, D.N., Wang, M., Pieper, S.D., Warfield, S.K., White, N.S., Manandhar, S., Brown, G.G., Vangel, M.G., Kikinis, R., Wells, W.M.: Reproducibility of functional MR imaging: Preliminary results of prospective multi-institutional study performed by biomedical informatics research network1. Radiology 237(3), 781–789 (Dec 2005). http://radiology.rsna.org/content/237/3/781

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations