Skip to main content

Clinical Pencil Beam Scanning: Present and Future Practices

  • Chapter
Book cover Particle Radiotherapy

Abstract

Pencil beam scanning (PBS) is the most advanced beam delivery technology in particle therapy nowadays. After a pioneering phase, PBS is rapidly becoming available on a larger scale worlwide, and is expected to be the standard beam delivery technique in the future to come. The characterization of a PBS isocentric gantry involves a number of validation tests both at the hardware level (e.g. mechanical isocentricity of gantry and patient positioning system) and at the beam geometry level (e.g. spot size, shape and positional accuracy as a function of gantry angle and energy). A beam model is then generated in the treatment planning systems (TPS), and an extensive validation is needed, from simple geometries to heterogenous phantoms mimicking a patient. Last but not least, planning techniques ensuring plan robustness with respect to setup error and range uncertainties should be implemented in order to minimize the difference between planned and delivered dose distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentzen S. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 2005;6(2):112–7.

    Article  PubMed  Google Scholar 

  2. Bernatowicz K, Lomax AJ, Knopf A. Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients. Phys Med Biol. 2013;58(22):7905.

    Article  CAS  PubMed  Google Scholar 

  3. Engelsman M, Schwarz M, Dong L. Physics controversies in proton therapy. Sem Rad Oncol. 2013;23:88–96.

    Article  Google Scholar 

  4. Flanz J. Particle beam scanning. In: Paganetti H, editor. Proton therapy physics. Boca Raton(FL): CRC Press; 2012.

    Google Scholar 

  5. Fredriksson A, Forsgren A, Hardemark B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys. 2011;38:1672.

    Article  PubMed  Google Scholar 

  6. Gillin MT, Sahoo N, Bues M, Ciangaru G, Sawakuchi G, Poenisch F, Arjomandy B, Martin C, Titt U, Suzuki K, Smith AR, Zhu XR. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010;37(1):154–63.

    Article  PubMed  Google Scholar 

  7. Grassberger C, Dowdell S, Lomax AJ, et al. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2013;86(2):380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys. 2006;65(1):1–7.

    Article  PubMed  Google Scholar 

  9. Jäkel O, Hartmann GH, Karger CP, Heeg P. A calibration procedure for beam monitors in a scanned beam of heavy charged particles. Med Phys. 2004;31(5):1009–13.

    Article  PubMed  Google Scholar 

  10. Kozak KR, Smith BL, Adams J, et al. Accelerated partial-breast irradiation using proton beams: initial clinical experience. Int J Radiat Oncol Biol Phys. 2006;66(3):691–8.

    Article  PubMed  Google Scholar 

  11. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys Med Biol. 2008;53(4):1027–42.

    Article  CAS  PubMed  Google Scholar 

  12. Lomax AJ, Pedroni E, Rutz H, et al. The clinical potential of intensity modulated proton therapy. Z Med Phys. 2004;14:147–52.

    Article  PubMed  Google Scholar 

  13. Pedroni E, Böhringer T, Coray A, et al. Initial experience of using an active beam delivery technique at PSI. Strahlenther Onkol. 1999;175(Suppl II):18–20.

    Article  PubMed  Google Scholar 

  14. Pedroni E, Scheib S, Böhringer T, Coray A, Grossmann M, Linand S, Lomax A. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams. Phys Med Biol. 2005;50:541–61.

    Article  CAS  PubMed  Google Scholar 

  15. Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS – an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39:6818–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys Med Biol. 2008;53(6):1689–700.

    Article  CAS  PubMed  Google Scholar 

  17. Schneider U, Lomax A, Pemler P, et al. The impact of IMRT and proton radiotherapy on secondary cancer incidence. Strahlenther Onkol. 2006;182:647–52.

    Article  PubMed  Google Scholar 

  18. Schulte RW, Bashkirov V, Loss Klock MC, et al. Density resolution of proton computed tomography. Med Phys. 2005;32(4):1035–46.

    Article  PubMed  Google Scholar 

  19. Schwarz M, van der Geer J, Van Herk M, et al. Impact of geometrical uncertainties on 3D CRT and IMRT dose distributions for lung cancer treatment. Int J Radiat Oncol Biol Phys. 2006;65:1260–9.

    Article  PubMed  Google Scholar 

  20. Stroom JC, de Boer HC, Huizenga H, et al. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999;43:905–19.

    Article  CAS  PubMed  Google Scholar 

  21. Unkelbach J, Bortfeld T, Martin BC, et al. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. Med Phys. 2009;36(1):149–63.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Widesott L, Lomax AJ, Schwarz M. Is there a single spot size and grid for intensity modulated proton therapy? Simulation of head and neck, prostate and mesothelioma cases. Med Phys. 2012;39(3):1298–308.

    Article  PubMed  Google Scholar 

  23. Witte MG, van der Geer J, Schneider C, et al. IMRT optimization including random and systematic geometric errors based on the expectation of TCP and NTCP. Med Phys. 2007;34(9):3544.

    Article  PubMed  Google Scholar 

  24. Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol. 2008;53:R193–241.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Schwarz, M. et al. (2016). Clinical Pencil Beam Scanning: Present and Future Practices. In: Rath, A., Sahoo, N. (eds) Particle Radiotherapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2622-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2622-2_7

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2621-5

  • Online ISBN: 978-81-322-2622-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics