Skip to main content

Abstract

The fullerene-C60 is a commercially attractive nanoparticle which increases the efficiency of drugs, cosmetics, and electronics. Like most of the contaminants when released into the environment, the final destination of fullerene-C60 might be the aquatic system, where it will be subject to interactions with the biota and other compounds. This study aimed to evaluate the possible effects of this nanoparticle on marine and estuarine biota. Thus, acute toxicity assays with Acartia tonsa and Mysidopsis juniae were conducted to evaluate the toxicity of aqueous fullerene suspension (nC60). This suspension of C60 was prepared using 200 mg of fullerene-C60 dissolved in 1 L of Milli-Q water. Due to the low solubility of fullerene-C60 in water, the nominal concentration of suspension was 0.53 μg L−1. The nominal concentrations used for the assays were 0.053 and 0.265 μg L−1, which correspond to 10 % and 50 % of the concentration of nC60, respectively. The results indicated that nC60 did not cause acute toxicity to A. tonsa and M. juniae at the tested concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABNT (2005) Ecotoxicologia aquática – toxicidade aguda – “Método de ensaio com Misidáceos (Crustacea)’. Norma ABNT-NBR15308:2005, Associoção Brasileira de Normas Técnicas, Rio de Janeiro, p 17

    Google Scholar 

  • Andrievsky GV, Kosevich MV, Volk OM, Shelkovsky VS, Vashchenko LA (1995) On the production of an aqueous colloidal solution of fullerenes. J Chem Soc 12, Chem Commun 1281–1282

    Google Scholar 

  • Badaró-Pedroso C, Reynier MV, Prósperi VA (2002) Testes de Toxicidade Aguda com Misidáceos – Ênfase nas Espécies Mysidopsis juniae e Mysidium gracile (Crustacea: Mysidacea). In: Nascimento IA, Sousa ECPM, Nipper M (eds) Métodos em Ecotoxicologia Marinha: Aplicações no Brasil. Comp & Art, Salvador, pp 123–139

    Google Scholar 

  • Barnes R (1996) Zoologia dos Invertebrados. Roca, São Paulo, p 1028

    Google Scholar 

  • Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387

    Article  CAS  PubMed  Google Scholar 

  • Bianchi F, Acri F, Bernardi A, Berton A, Boldrin A, Cammati E, Cassin D, Comaschi A (2003) Can plankton communities be considered as bioindicators of water quality in the Lagoon of Venice? Mar Pollut Bull 46:964–971

    Article  CAS  PubMed  Google Scholar 

  • Bianco A, Ros TD (2007) Biological applications of fullerenes. In: Langa F, Nierengarten JF (eds) Fullerenes. Principles and applications. The Royal Society of Chemistry, Cambridge, pp 301–328

    Google Scholar 

  • Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) First soluble M@C-60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C-60[C(COOH)(2)](10) as a MRI contrast agent. J Am Chem Soc 125:5471–5478

    Article  CAS  PubMed  Google Scholar 

  • Brant J, Lecoanet MR, Wiesner H (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanoparticle Res 7:545–553

    Article  CAS  Google Scholar 

  • CETESB (1992) Água do mar – “Teste de toxicidade aguda com Mysidopsis juniae, Silva, 1979’. Norma Técnica L5.251:1992, Companhia de Tecnologia e Saneamento Ambiental, São Paulo, p 19

    Google Scholar 

  • Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 27:1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    Article  CAS  PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Diederich F, Thilgen C (1996) Covalent fullerene chemistry. Science 271:317–324

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Structure of fullerenes. In: Dresselhaus MS, Dresselhaus G, Eklund PC (eds) Science of fullerenes and carbon nanotubes: their properties and applications. Academic, San Diego, pp 60–79

    Chapter  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    Article  CAS  PubMed  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  PubMed  Google Scholar 

  • Hasobe T, Imahori H, Kamat PV, Ahn TK, Kim SK, Kim D, Fujimoto A, Hirakawa T, Fukuzumi S (2005) Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J Am Chem Soc 127:1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heymann D (1996) Solubility of fullerenes C-60 and C-70 in seven normal alcohols and their deduced solubility in water. Fuller Sci Technol 4:509–515

    Article  CAS  Google Scholar 

  • Hirsch A (1997) Aspects of organic chemistry of fullerenes. J Phys Chem Solid 58:1729–1740

    Article  CAS  Google Scholar 

  • Hulteen C, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087

    Article  CAS  Google Scholar 

  • ISO (1999) Water quality – “Determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea)’. Standard 14669:1999, International Organization for Standardization, Geneva, p 16

    Google Scholar 

  • Jafvert CT, Kulkarni PP (2008) Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ Sci Technol 42:5945–5950

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  PubMed  Google Scholar 

  • Kaminski SM (2004) Influência da alimentação sobre a reprodução e o desenvolvimento do copépodo calanoida Acartia tonsa DANA, 1984, em cultivo intensivo. Dissertação de Mestrado, Centro de Ciências Agrárias, Departamento de Aquicultura – Universidade Federal de Santa Catarina. Florianópolis. p 66

    Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137

    Article  CAS  PubMed  Google Scholar 

  • Markovic Z, Trajkovic, V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29: 3561–3573.

    Google Scholar 

  • Mauchline J, Blaxter JHS, Southward AJ, Tyler PA (1998) Advances in marine biology – the biology of calanoid copepods – introduction. Academic Press LTD, London, p 124

    Google Scholar 

  • Medina M, Barata C (2004) Static-renewal culture of acartia tonsa (copepoda: calanoida) for ecotoxicological testing. Aquaculture 229:203–213

    Article  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  PubMed Central  PubMed  Google Scholar 

  • Oberdörster G, Oberdösrter E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed Central  PubMed  Google Scholar 

  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Google Scholar 

  • Prato M (1997) [60]Fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109

    Article  CAS  Google Scholar 

  • RCEP (2008) Novel materials in the environment: the case of nanotechnology. Twenty-seventh report, TSO (The Stationery Office), London, p 147

    Google Scholar 

  • Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J Phys Chem 97:3379–3383

    Article  CAS  Google Scholar 

  • Sabatini ME (1990) The developmental stages (copepodids I to VI) of Acartia tonsa Dana, 1849 (Copepoda, Calanoida). Crustaceana 59:53–61

    Article  Google Scholar 

  • Shinohara N, Matsumoto K, Endoh S, Maru J, Nakanishi J (2009) In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol Lett 191:289–296

    Google Scholar 

  • Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals (nC60) on daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77:1482–1487

    Article  CAS  PubMed  Google Scholar 

  • Taylor R, Walton DRM (1993) The chemistry of fullerenes. Nature 363:685–693

    Article  CAS  Google Scholar 

  • Taylor R, Hare JP, bdul-Sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. J Chem Soc Chem Commun 20:1423–1425

    Google Scholar 

  • Vileno B, Sienkiewicz A, Lekka M, Kulik AJ, Forr L (2004) In vitro assay of singlet oxygen generation in the presence of water-soluble derivatives of C60. Carbon 42:1195–1198

    Article  CAS  Google Scholar 

  • Yu H, Gan LH, Hu X, Venkatraman SS, Tam KC, Gang YY (2005) A novel amphiphilic double-[60]fullerene-capped triblock copolymer. Macromolecules 38:9889–9893

    Article  CAS  Google Scholar 

  • Zagatto PA (2006) Ecotoxicologia. In: Zagatto PA, Bertoletti E (eds) Ecotoxicologia Aquática: Princípios e Aplicações. Rima, São Carlos, pp 1–13

    Google Scholar 

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    Article  CAS  PubMed  Google Scholar 

  • Zhu XS, Zhu L, Li Y, Duan ZH, Chen W, Alvarez PJJ (2007) Developmental toxicity in zebrafish (danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC(60)) and fullerol. Environ Toxicol Chem 26:976–979

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samile Seber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Seber, S., Pinho, G.L.L. (2016). Effects of Fullerene Nanocomposite in Marine and Estuarine Organisms. In: Shukla, P. (eds) Frontier Discoveries and Innovations in Interdisciplinary Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2610-9_11

Download citation

Publish with us

Policies and ethics