Skip to main content

Therapeutic Radiopharmaceuticals for Bone Pain Palliation

  • Chapter
  • First Online:
Book cover Radiopharmaceuticals for Therapy

Abstract

Primary tumors often metastasize when tumor cells migrate via the blood supply or lymphatics to seed other sites for tumor progression. Particularly in prostate, breast, and lung cancer, metastases to the skeleton are often encountered in later stages of the disease process. Although bone metastases are often encountered in end-stage disease, multi-year survival is not uncommon, and palliation of the pain usually associated with the skeletal metastases can greatly improve quality of life and movement. A variety of palliative strategies are available, and depending on the anatomical location and number of metastases and other personalized factors, the use of therapeutic radioisotopes is particularly appealing since these agents for treatment of multi-foci are easy to administer, often on an outpatient basis, and provide palliation which last several months and can be repeated. This chapter discusses the development and use of radiolabeled palliative agents used in nuclear medicine practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen BJ, Raja C, Rizvi S, et al. Targeted alpha therapy for cancer. Phys Med Biol. 2004;49:3703–12.

    Article  PubMed  CAS  Google Scholar 

  • Alyafei S, Tomiyoshi K, Sarwar M, et al. Biodistribution studies of 186Re complexes of 3-amino-1-hydroxypropyliene-1,1-bisphosphonic acid in mice. Nucl Med Commun. 1999;20:551–7.

    Article  PubMed  CAS  Google Scholar 

  • Ando A, Ando I, Tonami N, et al. 177Lu-EDTMP: a potential therapeutic bone agent. Nucl Med Commun. 1998;19(6):587–91.

    Article  PubMed  CAS  Google Scholar 

  • Arteaga de Murphy C, Ferro-Flores G, Pedraza-Lopez M, et al. Labelling of Re-ABP with 188Re for bone pain palliation. Appl Raiat Isot. 2001;54:435–42.

    Article  CAS  Google Scholar 

  • Atkins HL, Mausner LF, Srivastava SC, et al. Biodistribution of Sn-117m(4+)DTPA for palliative therapy of painful osseous metastases. Radiology. 1993;186:279–83.

    Article  PubMed  CAS  Google Scholar 

  • Atkins HL, Mausner LF, Srivastava SC, et al. Tin-117m(4+)-DTPA for palliation of pain from osseous metastases: a pilot study. J Nucl Med. 1995;36:725–9.

    PubMed  CAS  Google Scholar 

  • Autio KA, Pandit-Taskar N, Carrasquillo JA, et al. Repetitively dosed docetaxel and 153samarium-EDTMP as an antitumor strategy for metastatic castration-resistant prostate cancer. Cancer. 2013;119(17):3186–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker GR, Levin J. Transient thrombocytopenia produced by administration of macrophage colony-stimulating factor: investigations of the mechanism. Blood. 1998;91:89–99.

    PubMed  CAS  Google Scholar 

  • Banerjee S, Pillai MRA, Knapp Jr FF. Lutetium-177 therapeutic radiopharmaceuticals – linking chemistry, radiochemistry and practical applications. Chem Rev. 2015;115:2934–74.

    Article  PubMed  CAS  Google Scholar 

  • Bauman G, Charette M, Reid R, Sathya J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005;75(3):258–70.

    Article  PubMed  CAS  Google Scholar 

  • Bellmunt J. Tackling the bone with alpha emitters in metastatic castration- resistant prostate cancer patients. Eur Urol. 2013;63(2):198–200.

    Article  PubMed  CAS  Google Scholar 

  • Biersack HJ, Palmedo H, Andris A, et al. Repeated Re-188 HEDP therapy of hormone refractory bone metastases in prostate cancer. J Nucl Med. 2011;52:1721–6.

    Article  PubMed  CAS  Google Scholar 

  • Bisunadan MM, Blower PJ, Clarke SEM, et al. Synthesis and characterization of [186]Rhenium(V)dimercaptosuccinic acid: a possible tumour radiotherapy agent. Appl Radiat Isot. 1991;42:167–71.

    Article  CAS  Google Scholar 

  • Blower PJ, Prakash S. The chemistry of rhenium in nuclear medicine. In: Perspectives on bioinorganic chemistry. Connecticut: JAI Press, Inc; 1999. p. 91–143.

    Google Scholar 

  • Blower PJ, Lam ASK, O’Doherty MJ, et al. Biodistribution and dosimetry of pentavlaent Rhenium-188-dimercaptosuccinic acid in patients with disseminated bone metastasis. Eur J Nucl Med. 1998;25:613–21.

    Article  PubMed  CAS  Google Scholar 

  • Blower PJ, Kettle AG, O’Doherty MJO. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med. 2000a;27:1405–9.

    Article  CAS  Google Scholar 

  • Blower PJ, Kettle AG, O’Doherty MJ, et al. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution. In: 28th annual meeting, British Nuclear Medicine Society, Brighton, 10–12 Apr 2000b.

    Google Scholar 

  • Blower PJ, Kettle AG, O’Doherty MJ, Knapp Jr FF. Quantitative prediction of 188Re(V)DMSA distribution from 99mTc(V)DMSA scans for targeted radiotherapy planning. J Nucl Med. 2000c;41(Suppl):274P.

    Google Scholar 

  • Bordoloi JK, Berry D, Khan IU, et al. Technetium-99m and rhenium-188 complexes with one and two pendant bisphosphonate groups for imaging arterial calcification. Dalton Trans. 2015;44(11):4963–75.

    Article  PubMed  CAS  Google Scholar 

  • Bouchet LG, Bolch WE, Goddu SM, et al. Considerations in the selection of radiopharmaceuticals for palliation. J Nucl Med. 2000;41(4):682–7.

    PubMed  CAS  Google Scholar 

  • Brady D, Parker CC, O'Sullivan JM. Bone-targeting radiopharmaceuticals including radium-223. Cancer J. 2013;19(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  • Bruland OS, Skretting A, Solheim OP, Aas M. Targeted radiotherapy of osteosarcoma using 153Sm-EDTMP. A new promising approach. Acta Oncol. 1996;35:381–4.

    Article  PubMed  CAS  Google Scholar 

  • Bruland Ø, Nilsson S, Fisher DR, Larson RH. High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12(20 Suppl):6250s–7.

    Article  PubMed  CAS  Google Scholar 

  • Bruland OS, Jonasdottir TJ, Fisher DR, Larsen RH. Radium-223: from radiochemical development to clinical applications in targeted cancer therapy. Curr Radiopharm. 2008;1:103–208.

    Article  Google Scholar 

  • Chopra A. 177Lu-labeled methylene diphosphonate. Molecular imaging and contrast agent database (MICAD) [internet]. Bethesda: National Center for Biotechnology Information (US); 2011. p. 2004–13.

    Google Scholar 

  • D’angelo G, Sciuto R, Salvatori M, et al. Targeted “bone-seeking” radiopharmaceuticals for palliative treatment of bone metastases: a systematic review and meta-analysis. Q J Nucl Med Mol Imaging. 2012;56(6):538–43.

    PubMed  Google Scholar 

  • Das T, Chakraborthy S, Sarma HD, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009;36:561–8.

    Article  PubMed  CAS  Google Scholar 

  • Dash A, Knapp Jr FF. An overview of radioisotope separation technologies for development of 188W/188Re radionuclide generators providing 188Re to meet future research and clinical demands. RSC Adv. 2015;5:39012–3903.

    Article  CAS  Google Scholar 

  • Dash A, Pillai MRA, Knapp FF. Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49:85–107.

    Article  PubMed  CAS  Google Scholar 

  • Davis J, Cook ND, Pither RJ. Biologic mechanisms of 89SrCl2 incorporation into type I collagen during bone mineralization. J Nucl Med. 2000;41:183–8.

    PubMed  CAS  Google Scholar 

  • De Klerk JM, van het Schip AD, Zonnenberg BA, et al. Phase 1 study of Rhenium-186-HEDP in patients with bone metastases originating from breast cancer. J Nucl Med. 1996;37:244–9.

    PubMed  Google Scholar 

  • De Rosales RTM, Finucane C, Foster J, et al. 188Re(CO)-dipicolylamine-alendronate: a new bisphosphonate conjugate for the radiotherapy of bone metastases. Bioconj Chem. 2010;21:811–5.

    Article  CAS  Google Scholar 

  • Den RB, Doyle LA, Knudsen KE. Practical guide to the use of radium 223 dichloride. Can J Urol. 2014;21(2 Suppl 1):70–6.

    PubMed  Google Scholar 

  • Eisenhut M. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: I. Organ distribution and kinetics of I-131 BDP3 in rats. J Nucl Med. 1984;25(12):1356–61.

    PubMed  CAS  Google Scholar 

  • Eisenhut M, Beberich R, Kimming B, et al. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: II. Preliminary clinical results with iodine-131 BDP3. J Nucl Med. 1986a;27(8):1255–61.

    PubMed  CAS  Google Scholar 

  • Eisenhut M, Fritz P, Kimmig B, et al. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: III. Considerations of interaction. Binding and adsorbed dose. Int J Rad Appl Instrum A. 1986b;37(8):741–7.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Barber J, Taylor DM. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: IV. Syntheses of benzylidenephosphonates and their distribution in rats. Int J Rad App Instrumen A. 1987;38(7):535–40.

    Article  CAS  Google Scholar 

  • Elder RC, Yuan J, Helmer B, et al. Studies of the structure and composition of rhenium-1,1-hydroxyethylidenediphosphonate (HEDP) analogues of the radiotherapeutic agent (186)ReHEDP. Inorg Chem. 1997;36(14):3055–63.

    Article  PubMed  CAS  Google Scholar 

  • Ermolaev SV, Zhuikov BL, Kokhanyuk VM, et al. Production yields of 117mSn from natural antimony target in proton energy range 145–35 MeV. J Label Compd Radiopharm. 2007;50:611–2.

    Article  CAS  Google Scholar 

  • Ermolaev SV, Zhuikov BL, Kokhanyuk AA. Production of no-carrier added tin-117m from proton irradiated antimony. J Radioanal Nucl Chem. 2009;280:319–24.

    Article  CAS  Google Scholar 

  • Fellner M, Baum R, Kubicek V, et al. 177Lu-BPAMD – from bone imaging to therapy with a macrocycle-bisphosphonate ligand. J Nucl Med. 2010;51 Suppl 2:1164.

    Google Scholar 

  • Fettich J, Nair G, Padhy AK, et al. Phosphorus-32 for bone pain palliation due to bone metastases, its safety and efficacy in patients with advanced cancer. Vienna: IAEA-TECDOC-1228; 2001. p. 193–8.

    Google Scholar 

  • Fettich J, Padhy A, Nair N, et al. Comparative clinical efficacy and safety of phosphorus-32 and strontium-89 in the palliative treatment of metastatic bone pain: results of an IAEA coordinated research project. World J Nucl Med. 2003;2:226–31.

    Google Scholar 

  • Finlay IG, Mason MD, Shelley M. Radioisotopes for palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima S, Hayashi S, Kume S, et al. The production of high specific activities of Tin. Bull Chem Soc Jpn. 1963;36(10):1225–8.

    Article  CAS  Google Scholar 

  • Fuster D, Herranz R, Vidal-Sicart S, et al. Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun. 2000;21:623–62.

    Article  PubMed  CAS  Google Scholar 

  • Gough N, Miah AB, Linch M. Nonsurgical oncological management of cancer pain. Curr Opin Support Palliat Care. 2014;8(2):102–11.

    Article  PubMed  Google Scholar 

  • Guhlke S, Scheithauer S, Oetjen K, et al. 188Re(V)-DMSA: in-vitro and in-vivo studies on the individual stereo isomers. Radiochim Acta. 2009;92:277–83.

    Article  Google Scholar 

  • Harrison MR, Wong TZ, Armstrong AJ, George DJ. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag Res. 2013;5:1–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassfjell SP, Bruland ØS, Hoff P. 212Bi-DOTMP–an α particle emitting bone seeking agent for targeted radiotherapy. Nucl Med Biol. 1997;24:231–7.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen G, Fisher DR, Roeske JC, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.

    PubMed  CAS  Google Scholar 

  • Henriksen G, Bruland OS, Larsen RH. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents. Anticancer Res. 2004;24(1):101–5.

    PubMed  CAS  Google Scholar 

  • Hoskin P, Sartor O, O'Sullivan JM, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a pre-specified subgroup analysis from the randomized, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014;15(12):1397–406.

    Article  PubMed  CAS  Google Scholar 

  • Howell RW, Goddu SM, Narra VR, et al. Radiotoxicity of gadolinium-148 and radium-223 in mouse testes: relative biological effectiveness of alpha-particle emitters in vivo. Radiat Res. 1997;147:342–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh B-T, Callahan AP, Beets AL, et al. Ascorbic acid/saline eluant increases 188Re yields after “wet” storage of 188W/188Re generators. Appl Radiat Isot. 1996;47:23–6.

    Article  CAS  Google Scholar 

  • Jadvar H, Quinn DI. Targeted alpha-particle therapy of bone metastases in prostate cancer. Clin Nucl Med. 2013;38:966–71.

    PubMed  Google Scholar 

  • Jansen DR, Krijger GC, Kolar ZI, et al. Targeted radiotherapy of bone malignancies. Curr Drug Discov Technol. 2010;7(4):233–46.

    Article  PubMed  CAS  Google Scholar 

  • Jeong JM, Chung JK. Update: therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical studies. Can Biother Radiopharm. 2003;18:707–18.

    Article  CAS  Google Scholar 

  • Kasalický J, Kraská V. The effect of repeated strontium-89 chloride therapy in bone pain palliation in patients with skeletal cancer metastases. Eur J Nucl Med. 1998;25:1362–7.

    Article  PubMed  Google Scholar 

  • Knapp Jr FF. Rhenium-188 – a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm. 1998;13:337–49.

    Article  PubMed  CAS  Google Scholar 

  • Knapp Jr FF. Baum RP. Radionuclide generators – a new renaissance in the development of technologies to provide diagnostic and therapeutic radioisotopes for clinical applications. Curr Radiopharm. 2012;5(3):175–7.

    Google Scholar 

  • Knapp Jr FF, Callahan AP, Beets AL, et al. Processing of reactor-produced 188W for fabrication of clinical scale alumina-based 188W/188Re generators. Appl Radiat Isot. 1994;45:1123–8.

    Article  CAS  Google Scholar 

  • Knapp Jr FF, Beets AL, Guhlke S, et al. Availability of rhenium-188 from the alumina-based Tungsten-188/rhenium-188 generator for preparation of rhenium-188-labeled radiopharmaceuticals for cancer treatment. Anticancer Res. 1997;17:1783–95.

    PubMed  CAS  Google Scholar 

  • Knapp FF, Mirzadeh S, Beets AL, et al. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot. 1998;49(4):309–15.

    Article  PubMed  CAS  Google Scholar 

  • Knapp Jr FF, Mirzadeh S, Beets AL. Tungsten-188/rhenium-188 generators using tungsten-188 reactor-produced from irradiation of natural tungsten targets. J Nucl Med. 2000;41(Suppl):149.

    Google Scholar 

  • Knapp Jr FF, Turner JH, Padhy AK. Issues associated with the use of the Tungsten-188/Rhenium-188 generator and concentrator system and preparation of Re-188 HDD: A report. World J Nucl Med. 2004;3:137–43.

    Google Scholar 

  • Kyu KD, Abramov AA, Volkova SV, et al. Extraction of Tin-117m from an antimonic target irradiated by protons. Theor Found Chem Eng. 2010;44:600–3.

    Article  CAS  Google Scholar 

  • Lam AS, Kettle AG, O’Doherty MJ, et al. Pentavalent 99mTc-DMSA imaging in patients with bone metastases. Nucl Med Commun. 1997;18:907–14.

    Article  PubMed  CAS  Google Scholar 

  • Lam MGEH, de Klerk JMH, van Rijk PP. 186Re-HEDP for metastatic bone pain in breast cancer patients. In: Bombardieri E, Gianni L, Bonadonna G, editors. Breast cancer. Berlin/Heidelberg: Springer; 2008. p. 257–70.

    Google Scholar 

  • Lambert B, de Klerk JM. Clinical applications of 188Re-labelled radiopharmaceuticals for radionuclide therapy. Nucl Med Commun. 2006;27(3):223–9.

    Article  PubMed  CAS  Google Scholar 

  • Lange R, de Klerk JM, Bloemendal HJ, et al. Drug composition matters: the influence of carrier concentration on the radiochemical purity, hydroxyapatite affinity and in-vivo bone accumulation of the therapeutic radiopharmaceutical (188) Rhenium-HEDP. Nucl Med Biol. 2015;42(5):465–9.

    Article  PubMed  CAS  Google Scholar 

  • Lewington VJ. Targeted radionuclide therapy for bone metastases. Eur J Nucl Med. 1993;20(1):66–74.

    Article  PubMed  CAS  Google Scholar 

  • Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med. 2005;46 Suppl 1:38S–47.

    PubMed  CAS  Google Scholar 

  • Lewington VJ, McEwan AJ, Ackery DM, et al. A prospective, randomized double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer. 1991;27:954–8.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Russell PJ, Allen BJ. Targeted alpha-therapy for control of micrometastatic prostate cancer. Expert Rev Anticancer Ther. 2004;4:459–68.

    Article  PubMed  CAS  Google Scholar 

  • Liepe K, Kropp J, Knapp Jr FF, et al. Rhenium-188 in comparison to rhenium-186 and strontium-89 in the treatment of bone metastases. Eur J Nucl Med. 1998;25:861.

    Google Scholar 

  • Liepe K, Hiliscs R, Runge R, et al. Dose calculation and clinical efficacy of rhenium-188-HEDP in bone metastases, European Association of Nuclear Medicine Congress, Barcelona, Spain, Oct. 9–13, 1999. Eur J Nucl Med. 1999a;26:1052.

    Google Scholar 

  • Liepe K, Kropp J, Knapp Jr FF, et al. Kinetics and therapeutic effect of rhenium-188 in palliative treatment of metastatic bone pain, annual meeting, Society of Nuclear Medicine, Los Angeles, CA, June 6–10, 1999. J Nucl Med. 1999b;40:219P.

    Google Scholar 

  • Liepe K, Hilscs R, Kropp J, et al. Rhenium-188-HEDP for the palliative therapy of osseous metastases. In: German Nuclear Medicine meeting, Ulm, April 1999c (German).

    Google Scholar 

  • Liepe K, Hliscs R, Kropp J, et al. Rhenium-188-HEDP in the palliative treatment of bone metastases. Cancer Biother Radiopharm. 2000a;15(3):261–5.

    Article  PubMed  CAS  Google Scholar 

  • Liepe K, Franke WG, Kropp J, et al. Comparison of Rhenium-188 and Strontium-89 in palliation of painful bone metastases. Nuklearmedizin. 2000b;39:146–51 (German).

    PubMed  CAS  Google Scholar 

  • Liepe JK, Kropp J, Hlisc R, et al. Radiation dose of 188Re in bone metastases. J Nucl Med. 2000c;41(Suppl):266.

    Google Scholar 

  • Liepe K, Hliscs R, Kropp J, et al. Radiation adsorbed dose pf Rhenium-188-HEDP in bone metastases, bone marrow and bone surface. In: EANM Congress, Naples, 24–29 Aug 2001.

    Google Scholar 

  • Liepe K, Hliscs R, Runge R, Kropp J. Which is the favorable time for the post-therapeutic scan in dosimetry after 188Re HEDP application. J Nucl Med. 2002;43:358P.

    Google Scholar 

  • Liepe K, Hliscs R, Kropp J, et al. Dosimetry of 188Re-hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J Nucl Med. 2003a;44(6):953–60.

    PubMed  CAS  Google Scholar 

  • Liepe K, Kropp J, Runge R, et al. Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer. 2003b;18:625–9.

    Article  CAS  Google Scholar 

  • Liepe K, Kropp J, Runge R, et al. Therapeutic efficacy of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer. 2003c;89:625–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liepe K, Kropp J, Hliscs R, et al. Radiation dosimetry of Rhenium-188-HEDP in human prostate cancer skeletal metastases. J Nucl Med. 2003d;44:953–60.

    PubMed  CAS  Google Scholar 

  • Liepe K, Kropp J, Hliscs R, et al. Rhenium-188 HEDP dosimetry in bone pain induced by prostate cancer. In: Proceedings of the 11th mediterranean symposium on nuclear medicine and radiopharmaceuticals, Athens, Greece, 28–30 May. Athens: Mediterrea Pub.; 2003e. p. 69–82. ISBN 960-86437-2-4.

    Google Scholar 

  • Liepe K, Runge R, Kotzerke J. Systemic radionuclide therapy of pain palliation. Am J Hosp Palliat Care. 2005a;22:457–64.

    Article  PubMed  Google Scholar 

  • Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Can Res Clin Oncol. 2005b;131:60–6.

    Article  CAS  Google Scholar 

  • Liepe K, Geidel HH, Bergmann R, et al. Autoradiographic studies of Rhenium-188-hydroxyethylidene diphosphonate and osteoblastic bone metastases in a Rat model of metastatic prostate cancer. Nucl Med Commun. 2009;30:693–9.

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Lin CP, Yeh SJ, et al. Rhenium-188 hydroxyethylidene diphosphonate: a new generator-produced radiotherapeutic drug of potential value for the treatment of bone metastases. Eur J Nucl Med. 1997;24(6):590–5.

    PubMed  CAS  Google Scholar 

  • Majkowska A, Neves M, Antunes I, Bilewicz A. Complexes of low energy beta emitters 47Sc and 177Lu with zoledronic acid for bone pain therapy. Appl Radiat Isotopes. 2009;67:11–3.

    Article  CAS  Google Scholar 

  • Mantyh PW. Bone cancer pain: from mechanism to therapy. Curr Opin Support Palliat Care. 2014;8(2):83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques F, Gano L, Paula Campello M, et al. 13- and 14-membered macrocyclic ligands containing methylcarboxyate or methylphosphonate pendate arms: chemical and biological evaluation of their 153Sm and 166Ho complexes as potential agents for therapy or bone pain palliation. J Inorg Biochem. 2006;100:270–80.

    Article  PubMed  CAS  Google Scholar 

  • Maslov BD, Ya G, Starodub GY, et al. Production of 117mSn with high specific activity by cyclotron. Appl Radiat Isot. 2011;69:965–8.

    Article  PubMed  CAS  Google Scholar 

  • Mathew B, Chakraborty S, Das T, Sarma HD, Banerjee S, Samuel G, Venkatesh M, Pillai MR. 175Yb labeled polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2004;60:635–42.

    Article  PubMed  CAS  Google Scholar 

  • Mausner LF, Mirzadeh S, Srivastava SC. Improved specific activity of reactor produced 117mSn with the Szilard-Chalmers process. Int J Radiat Appl Instrum Appl Radiat Isot. 1992;43:1117–22.

    Article  CAS  Google Scholar 

  • Maxon III HR, Schroder LE, Hertzberg VS, et al. Rhenium-186(Sn)HEDP for treatment of painful osseous metastases: results of a double-blind crossover comparison with placebo. J Nucl Med. 1991;32:1877–81.

    PubMed  Google Scholar 

  • Maxon HR, Schroder LE, Washburn LC, et al. Rhenium-188 (Sn)HEDP for treatment of osseous metastases. J Nucl Med. 1998;39:659.

    PubMed  CAS  Google Scholar 

  • McGann S, Horton ER. Radium-223 dichloride: a novel treatment option for castration-resistant prostate cancer patients with symptomatic bone metastases. Ann Pharmacother. 2015;49(4):469–76.

    Article  PubMed  CAS  Google Scholar 

  • Mirzadeh S. Generator-produced alpha-emitters. Appl Radiat Isot. 1998;49:345–9.

    Article  CAS  Google Scholar 

  • Mirzadeh S, Knapp Jr FF, Alexander CW, Mausner LF. Evaluation of neutron inelastic scattering for radioisotope production. Appl Radiat Isot. 1997;48:441–6.

    Article  CAS  Google Scholar 

  • Mirzadeh S, Mausner LF, Garland MA. Reactor-produced medical radionuclides. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F, editors. Handbook of nuclear chemistry. Dordrecht, USA: Springer Science Business Media B.V.; 2011. p. 1857–902.

    Chapter  Google Scholar 

  • Mitterhauser M, Togel S, Wadsak W, et al. Binding studies of [(18)F]-fluoride and polyphosphonates radiolabeled with [(111)In], [(153)Sm], and [(188)Re] on bone compartments: a new model for the pre in vivo evaluation of bone seekers. Bone. 2004a;34:835–44.

    Article  PubMed  CAS  Google Scholar 

  • Mitterhauser M, Wadsak W, Eidherr H, et al. Labeling of EDTMP (multibone®) with [111In], [99mTc], and [188Re] using different carriers for “cross complexation. Appl Radiat Isot. 2004b;60:653–8.

    Article  PubMed  CAS  Google Scholar 

  • Morris MJ, Scher HI. Clinical approaches to osseous metastases in prostate cancer. Oncologist. 2003;8(2):161–73.

    Article  PubMed  Google Scholar 

  • Nilsson S, Larsen RH, Fosså SD, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11(12):4451–9.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson S, Franzen L, Parker C, et al. Bone targeted radium-223 in symptomatic, hormone refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K. Development of radiopharmaceuticals for diagnosis and therapy of metastatic bone cancer. Yakugaku Zasshi. 2012;132:1151–7.

    Google Scholar 

  • Ogawa K, Washiyama K. Bone target radiotracers for palliative therapy of bone metastases. Curr Med Chem. 2012;19:3290–300.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Mukai T, Arano Y, Ueda M, et al. Design of a radiopharmaceutical for the palliation of painful bone metastases: rhenium-186-labeled bisphosphonate derivative. J Label Compd Radiopharm. 2004;47:753–61.

    Article  CAS  Google Scholar 

  • Ogawa K, Mukai T, Arano Y, et al. Development of a rhenium-186-labeled MAG3-conjugated bisphosphonate for the palliation of metastatic bone pain based on the concept of bifunctional radiopharmaceuticals. Bioconjug Chem. 2005;16:751–7.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Mukai T, Arano Y, et al. Rhemium-186-monoaminemonoamidedithiol-conjugated bisphosphonate derivatives for bone pain palliation. Nucl Med Biol. 2006;33:513–52.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Kawashima H, Shiba K, et al. Development of 90Y-DOTA-conjugated bisphosphonates for treatment of painful bone metastases. Nucl Med Biol. 2009;36:129–35.

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Won KS, Moon DH, et al. Preparation and biological evaluation of 188Re-ethylenediammine-N, N, N’, N’-tetrakis(methylenephosphonic acid) as a potential agent for bone pain palliation. Nucl Med Commun. 2002;23:75–81.

    Article  PubMed  Google Scholar 

  • Orsini F, Guidoccio F, Mazzarri S, Mariani G. Palliation and survival after repeated 188Re-HEDP therapy of hormone-refractory bone metastases of prostate cancer: a retrospective analysis. J Nucl Med. 2012;53(8):1330–1.

    Article  PubMed  Google Scholar 

  • Oster ZH, Som P, Srivastava SC, et al. The development and in-vivo behavior of tin containing radiopharmaceuticals II. Autoradiographic and scintigraphic studies in normal animals and in animal models of disease. Int J Nucl Med Biol. 1995;12:175–84.

    Article  Google Scholar 

  • Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:891–904.

    Article  Google Scholar 

  • Paes FM, Ernani V, Hosein P, Serafini AN. Radiopharmaceuticals: when and how to use them to treat metastatic bone pain. J Support Oncol. 2011;9:197–205.

    Google Scholar 

  • Palmedo H, Guhlke S, Beets AL, et al. Rhenium-188-HEDP for pain palliation of bone metastases: first clinical results. European Nuclear Medicine Congress, Glasgow, Scotland, August 23–27, 1997. Eur J Nucl Med. 1997;24:962.

    Google Scholar 

  • Palmedo H, Guhlke S, Bender H, et al. Rhenium-188 HEDP for multiple metastases – a dose escalation study. Nuklearmedizin. 1998a;37:A30 (German).

    Google Scholar 

  • Palmedo H, Guhlke S, Bender H, et al. Rhenium-188 HEDP for palliation of multiple bone metastases – a dose escalation study. Eur J Nucl Med. 1998b;25:1047.

    Article  Google Scholar 

  • Palmedo H, Guhlke S, Schoencich G, et al. Pain therapy with Rhenium-188-HEDP of the bone metastases from prostate carcinoma. In: German Nuclear Medicine meeting, Ulm, Apr 1999a (German).

    Google Scholar 

  • Palmedo H, Guhlke S, Bender H, et al. Dose escalation study with Re-188-HEDP in prostate cancer patients with osseous metastases, annual meeting, Society of Nuclear Medicine, Los Angeles, CA, June 6–10. J Nucl Med. 1999b;40:218P.

    Google Scholar 

  • Palmedo H, Guhlke S, Bender H, et al. Dose escalation study with rhenium-188-HEDP in prostate cancer patients with osseous metastases. Eur J Nucl Med. 2000;27:123–30.

    Article  PubMed  CAS  Google Scholar 

  • Palmedo H, Albers P, Guhlke S, et al. 188Re-HEDP in the treatment of bone metastases generating from prostate cancer. J Nucl Med. 2002;43:160P.

    Google Scholar 

  • Palmedo H, Manka-Waluch A, Albers P, et al. Repeated bone targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188-HEDP. J Clin Oncol. 2003a;21:2869–75.

    Article  PubMed  CAS  Google Scholar 

  • Palmedo H, Manka-Waluch A, Albers P, et al. Repeated bone targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high energy radiopharmaceutical rheium-188-HEDP. J Nucl Med. 2003b;44:174P.

    Google Scholar 

  • Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45(8):1358–65.

    PubMed  CAS  Google Scholar 

  • Parker C, Nilsson S, Heinrich D, et al.; the ALSYMPCA Investigators. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Google Scholar 

  • Pecher C. Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of bone cancer. Univ Calif Publ Pharm. 1942;11:117–49.

    Google Scholar 

  • Pillai AM, Knapp Jr FF. Evolving important role of Lutetium-177 for therapeutic nuclear medicine. Curr Radiopharm. 2015;8:78–85.

    Google Scholar 

  • Pillai MR, Dash A, Knapp FF. Rhenium-188: availability from the 188W/188Re generator and status of current applications. Curr Radiopharm. 2012;5:​228–43.

    Article  PubMed  CAS  Google Scholar 

  • Pirmettis I, Limouris GS, Bouziotis P, et al. Pentavalent rhenium-188 dimercaptosuccinic acid: a New Kit formulation and its initial evaluation in mice. Radiochim Acta. 2001;89:115–8.

    Article  CAS  Google Scholar 

  • Polig E, Jee WS, Kruglikov IL. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides. Radiat Res. 1992;131:133–42.

    Article  PubMed  CAS  Google Scholar 

  • Ponsard B, Srivastava SC, Mausner LF, et al. Production of Sn-117m in the BR2 high-flux reactor. Appl Radiat Isot. 2009;67(7–8):1158–61.

    Article  PubMed  CAS  Google Scholar 

  • Quilty PM, Kirk D, Bolger JJ, et al. A comparison of the palliative effects of strontium-89 and external beam therapy radiotherapy in metastatic prostate cancer. Radiother Oncol. 1994;31:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Rasheed R, Lodhi NA, Khalid M, et al. Radio-synthesis, and in-vivo skeletal localization of 177Lu- zoledronic acid as novel bone seeking therapeutic radiopharmaceutical. J Anesth Clin Res. 2015;6:516.

    Article  Google Scholar 

  • Robinson RG. Radionuclides for the alleviation of bone pain in advanced malignancy. Clin Oncol. 1986;5:39–49.

    Google Scholar 

  • Robinson RG, Spicer JA, Preston DF, Baxter KG. Treatment of metastatic bone pain with strontium-89. Nucl Med Biol. 1987;14:219–22.

    CAS  Google Scholar 

  • Safarzadeh L. (175)Yb-TTHMP as a good candidate for bone pain palliation and substitute of other radiopharmaceuticals. Indian J Nucl Med. 2014;29:135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartor O. Overview of samarium Sm-153 lexidronam in the treatment of painful metastatic bone disease. Rev Urol. 2004;6 Suppl 10:S3–12.

    PubMed  PubMed Central  Google Scholar 

  • Savio E, Gaudiano J, Robles AM, et al. Re-HEDP: pharmacokinetic characterization, clinical and dosimetric evaluation in osseous metastatic patients with two levels of radiopharmaceutical dose. BMC Nucl Med. 2001;1(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheffler J, Derejko M, Bandurski T, Romanowicz G. Application of rhenium-188 HEDP in bone metastases therapy. Nucl Med Rev Cent East Eur. 2003;6(1):55–7.

    PubMed  Google Scholar 

  • Schmaljohan J, Guhlke S, Dudczak R, Biersack HJ. Kit preparation of 188Re-HEDP: comparison of three different formulations. J Nucl Med. 2000;41(Suppl):255P.

    Google Scholar 

  • Sciuto R, Festa A, Rea S, et al. Effects of low-dose cisplatin on 89-Sr therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med. 2002;43:79–86.

    PubMed  CAS  Google Scholar 

  • Shirvani-Arani S, Bahrami-Samani A, Meftahi M, et al. Production, quality control and biodistribution studies of thulium-170-labeled ethylenediamine (tetramethylene phosphonic acid.). Radiochim Acta. 2013;101:37–44.

    Article  CAS  Google Scholar 

  • Silberstein EB. The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Semin Oncol. 1993;20:10–21.

    PubMed  CAS  Google Scholar 

  • Silberstein EB. Teletherapy and radiopharmaceutical therapy of painful bone metastases. Semin Nucl Med. 2005;35(2):152–8.

    Article  PubMed  Google Scholar 

  • Singh A, Holmes RA, Farhangi M, et al. Human Pharmacokinetics of Samarium-153 EDTMP in Metastatic Cancer. J Nucl Med. 1989;30:1814–8.

    PubMed  CAS  Google Scholar 

  • Singh J, Powel AK, Clarke SEM, Blower PJ. Crystal structure and isomerism of a tumour targeting radiopharmaceutical: [ReO(dmsa)2]. Chem Soc Chem Commun. 1991;16:1115–7.

    Article  Google Scholar 

  • Singh J, Reghebi K, Lazarus CR, et al. Studies on the preparation and isomeric composition of [186Re]- and [188Re]- pentavalent rhenium dimercaptosuccinic acid complex. Nucl Med Commun. 1993;14:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Sinzinger H, Palumbo B, Özker K. The Vienna protocol and perspectives in radionuclide therapy. Q J Nucl Med Mol Imaging. 2011;55:420–30.

    PubMed  CAS  Google Scholar 

  • Soderquist CZ, McNamara BK, Fisher DR. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources. Curr Radiopharm. 2012;5:244–25.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SC. Bone-seeking therapeutic radiopharmaceuticals. Braz Arch Biol Technol. 2002;45:45–55.

    Article  CAS  Google Scholar 

  • Srivastava SC, Meinken GE, Richards P, et al. The development and in vivo behavior of Tin containing radiopharmaceuticals I. Chemistry, preparation and Biodistribution in small animals. Int J Nucl Med Biol. 1985;12:167–74.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SC, Atkins HL, Krishnamurthy GT, et al. Treatment of metastatic bone pain with Tin-117m stannic diethylenetriamine- pentaacetic acid: a phase I/II clinical study. Clin Cancer Res. 1998;4:61–8.

    PubMed  CAS  Google Scholar 

  • Srivastava SC, Gonzales GR, Howell RW, et al. Dosimetry implant for treating restenosis and hyperplasia. WO. 2009;2009014806:A2.

    Google Scholar 

  • Stanik R, Svelik J, Benkovsky I. DMSA and its complexes with radioisotopes: review. J Radioanal Nucl Chem. 2012;293:545–54.

    Article  CAS  Google Scholar 

  • ter Heine R, Lange R, Breukels OB, et al. Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases. Int J Pharm. 2014;465(1–2): 317–24.

    Article  PubMed  CAS  Google Scholar 

  • Toporov YG, Andreyev OI, Akhetov FZ, et al. Reactor production of high specific activity Tin-117m at RIAR. In: Proceeding of 5th conference on isotopes, Brussels, 25–29 Apr 2005. p. 47–53.

    Google Scholar 

  • Tu SM, Delpass ES, Jones D. Strontium-89 combined with doxorubicin in the treatment of patients with androgen independent prostate cancer. Urol Oncol. 1997;2:191–7.

    Article  Google Scholar 

  • Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomized phase II trial. Lancet. 2001;357:336–41.

    Article  PubMed  CAS  Google Scholar 

  • Turner PG, O’Sullivan J. Radium-223 dichloride for the treatment of metastatic prostate cancer. Expert Opin Pharmacother. 2014;15(14):2105–11.

    Article  PubMed  CAS  Google Scholar 

  • Turner JH, Martindale AA, Sorby P, et al. Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med. 1989;15:784–95.

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Jin ZL, Ogawa K, et al. Assessment of 186Re chelate-conjugated bisphosphonate for the development of new radiopharmaceuticals for bones. Nucl Med Biol. 2007;34:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Verdera ES, Gaudiano, J, Leon A, et al. Rhenium-188-HEDP-kit formulation/quality control. In: American Chemical Society annual meeting, Orlando, 25–29 Aug 1996.

    Google Scholar 

  • Verdera ES, Gaudiano J, Leon A, et al. Rhenium-188-HEDP: kit formulation and quality control. Radiochim Acta. 1997a;77:113–8.

    Google Scholar 

  • Verdera S, Gaudiano J, Leon A, et al. Rhenium-188-HEDP-kit formulation and quality control. Radiochim Acta. 1997b;70:113–7.

    Google Scholar 

  • Washiyama K, Amano R, Sasaki J, et al. 227Th-EDTMP: a potential therapeutic agent for bone metastasis. Nucl Med Biol. 2004;7:901–8.

    Article  CAS  Google Scholar 

  • Yano Y, Chu P, Anger HO. Tin—117m: production, chemistry and evaluation as a bone scanning agent. Int J Radiat Appl Instrum Appl Radiat Isot. 1973;24:319–25.

    Article  CAS  Google Scholar 

  • Yousefnia H, Zolghadri S, Shanehsazzadeh S. Estimated human absorbed dose of 177Lu-BPAMD based on mice data: comparison with 177Lu-EDTMP. Appl Radiat Isot. 2015;104:128–35.

    Article  PubMed  CAS  Google Scholar 

  • Zeevart JR, Jarvis NV, Louw WK, Jacksom GE. Metal-Ion speciation in blood plasma incorporating the tetraphosphonate, N, N-dimethylenephosphonate-1-hydroxy-4-aminopropylidenediphosphonate (APDDMP), in therapeutic radiopharmaceuticals. J Inorg Biochem. 2001;83:57–65.

    Article  Google Scholar 

  • Zhang H, Tian M, Li S, et al. Rhenium-188-HEDP therapy for the palliation of pain due to ossesous metastases in lung cancer patients. Can Biother Radiopharm. 2003;18:719–26.

    Article  CAS  Google Scholar 

  • Zolghadri S, Yousefnia H, Jalilian AR, et al. Production, biodistribution assessment and dosimetric evaluation of 177Lu-TTHMP as an agent for bone pain palliation. Asia Oceania J Nucl Med Biol. 2015;3(1):35–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Knapp, F.F.(., Dash, A. (2016). Therapeutic Radiopharmaceuticals for Bone Pain Palliation. In: Radiopharmaceuticals for Therapy . Springer, New Delhi. https://doi.org/10.1007/978-81-322-2607-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2607-9_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2606-2

  • Online ISBN: 978-81-322-2607-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics