Skip to main content

Bioremediation of Pesticide-Contaminated Soil: Emerging Options

  • Chapter

Abstract

The increasing demand on agricultural produce has increased the usage of pesticides that in turn have increased environmental pollution, leading to serious health concerns. Most of these chemicals are recalcitrant and hence accumulate in the environment. A large number of remedial measures have been proposed over the years, but bioremediation still remains the green route. This chapter discusses the various bioremediation options available and the difficulties in taking lab-scale studies to the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarry S, Olu-Arotiowa OA, Aremu M, Jimoda LA (2013) Biodegradation of dichlorovos (organophosphate pesticide) in soil by bacterial isolates. J Nat Sci Res 3:12–16

    Google Scholar 

  • Ahemad M, Khan MS (2011) Pesticide Interactions with Soil Microflora: Importance in bioremediation. In: Microbes and Microbial Technology. Springer, New York, pp 393–413. doi:10.1007/978-1-4419-7931-5_15

    Chapter  Google Scholar 

  • Asquith EA, Geary PM, Nolan AL, Evans CA (2012) Comparative bioremediation of petroleum hydrocarbon-contaminated soil by biostimulation, bioaugmentation and surfactant addition. J Environ Sci Eng A 1:637–650

    Google Scholar 

  • Awasthi N, Kumar A, Makkar R, Cameotra SS (1999) Biodegradation of soil-applied endosulfan in the presence of a biosurfactants. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng B34:793–803. doi:10.1080/03601239909373226

    Article  CAS  Google Scholar 

  • Barrett K, Jaward FM (2012) A review of endosulfan, dichlorvos, diazinon, and diuron–pesticides used in Jamaica. Int J Environ Health Res 22:481–499. doi:10.1080/09603123.2012.667794

    Article  PubMed  CAS  Google Scholar 

  • Barriuso E, Laird DA, Koskinen WC, Dowdy RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am J 58:1632–1638. doi:10.2136/sssaj1994.03615995005800060008x

    Article  CAS  Google Scholar 

  • Bioremediation and the use of bioaugmentation products, synergy services, technology primer, http://www.greenesenergy.com/Images/Interior/download%20center/synergy/bioremediationbioaugmentation.pdf (18/02/2015)

  • Briglia M, Nurmiaho-Lassila EL, Vallini G, Salkinoja-Salonen M (1990) The survival of the pentachlorophenol-degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil. Biodegradation 1:273–281. doi:10.1007/BF00119764

    Article  Google Scholar 

  • Byard JL, Paulsen SC, Tjeerdema RS, Chiavelli D (2015). DDT, Chlordane, Toxaphene and PCB residues in newport bay and watershed: assessment of hazard to wildlife and human health. In Reviews of environmental contamination and toxicology, vol 235. Springer International Publishing, pp 49–168. doi: 10.1007/978-3-319-10861-2_3

  • Calvayrac C, Romdhane S, Barthelmebs L, Rocaboy E, Cooper JF, Bertrand C (2014) Growth abilities and phenotype stability of a sulcotrione-degrading Pseudomonas sp. isolated from soil. Int Biodeter Biodegr 91:104–110. doi:10.1016/j.ibiod.2014.03.020

    Article  CAS  Google Scholar 

  • Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calvet R, Barriuso E, Bedos C, Benoit P, Charnay MP, Coquet Y (2005) Conséquences agronomiques et environnementales (eds) France Agricole, Dunod, Les pesticides dans les sols. ISBN 2-85557-119-7, Paris

    Google Scholar 

  • Cao X, Yang C, Liu R, Li Q, Zhang W, Liu J, Song C, Qiao C, Mulchandani A (2013) Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicam UT26 with surface-displayed organophosphorus hydrolase. Biodegradation 24:295–303. doi:10.1007/s10532-012-9587-0

    Article  PubMed  CAS  Google Scholar 

  • Chanika E, Dafne G, Eftehia S, Panagiotis K, Evangelos K, Nikolaos GT, Emmanuel AT, Dimitrios GK (2011) Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides. Bioresour Technol 102:3184–3192. doi:10.1016/j.biortech.2010.10.145

    Article  PubMed  CAS  Google Scholar 

  • Chaplain V, Mamy L, Vieublé-Gonod L, Mougin C, Benoit P, Barriuso E, Nélieu S (2011) Fate of pesticides in soils: toward an integrated approach of influential factors, pesticides in the modern world – risks and benefits, Stoytcheva M (ed), ISBN: 978-953-307-458-0, INTECH, Open Access Publisher, pp 535–560. doi:10.5772/17035. Available from: http://www.intechopen.com/books/pesticides-in-the-modern-world-risks-and-benefits/fate-of-pesticides-in-soils-toward-an-integrated-approach-of-influential-factors

  • Chatterji AK (2007) Introduction to Environmental Biotechnology. Prentice-Hall of India Pvt. Ltd; 2nd Revised edn (1 August 2007)

    Google Scholar 

  • Chaurasia AK, Adhya TK, Apte SK (2013) Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour Technol 149:439–445. doi:10.1016/j.biortech.2013.09.084

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Chang C, Deng Y, An S, Dong YH, Zhou J, Hu M, Zhong G, Zhang LH (2014) Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. J Agric Food Chem 62:2147–2157. doi:10.1021/jf404908j

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yang L, Hu M, Liu J (2011) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767. doi:10.1007/s00253-010-3035-z

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticide detoxification. Trends Biotechnol 16:71–76. doi:10.1016/S0167-7799(97)01160-8

  • Cho YG, Rhee SK, Lee ST (2000) Effect of soil moisture on bioremediation of chlorophenol-contaminated soil. Biotechnol Lett 22:915–919. doi:10.1023/A:1005612232079

    Article  CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48:114–12. doi:10.1007/s12088-008-0011-8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cravotta CA (1982) US geological survey water-supply paper. US Government Printing Office, Denver

    Google Scholar 

  • Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol Biochem 42:193–202. doi:10.1016/j.soilbio.2009.10.016

    Article  CAS  Google Scholar 

  • Cycon M, Wojcik M, Piotrowska-Seget Z (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76:494–501. doi:10.1016/j

    Article  PubMed  CAS  Google Scholar 

  • Cycon M, Zmijowska A, Wojcik M, Piotrowska SZ (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manag 117:7–16. doi:10.1016/j.jenvman.2012.12.031

    Article  CAS  Google Scholar 

  • Eldridge BF (2008) Pesticide classifications and formulations, pesticide application and safety training for applicators of public health pesticides (eBook). Http://westnile.ca.gov/special/category_a/?page=chapter2.htm

  • El-Helow ER, Badawy ME, Mabrouk ME, Mohamed EA, El-Beshlawy YM (2013) Biodegradation of chlorpyrifos by a newly isolated Bacillus subtilis strain, Y242. Bioremediat J 17:113–123. doi:10.1080/10889868.2013.786019

    Article  CAS  Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758. doi:10.1126/science.1236281

    Article  PubMed  CAS  Google Scholar 

  • Fuentes MS, Sáez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231. doi:10.1007/s11270-011-0818-5

    Article  CAS  Google Scholar 

  • Frazar C (2000). The bioremediation and phytoremediation of pesticide-contaminated sites National Network of Environmental Studies (NNEMS) Fellow Compiled June–August 2000

    Google Scholar 

  • Fuentes MS, Alvarez A, Saez JM, Benimeli CS, Amoroso MJ (2014) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol 11:1147–1156. doi:10.1007/s13762-013-0314-0

    Article  CAS  Google Scholar 

  • Geetha M, Fulekar MH (2008), Proceedings of Taal 2007: the 12th world lake conference. In: Sengupta M, Dalwani R (ed) Bioremediation of pesticides in a developed bioreactor for conserving aquatic ecosystem, pp 933–935

    Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494. doi:10.1080/10643380490452362

    Article  CAS  Google Scholar 

  • González IR, Leal ER, Cerrato RF, García FE, Seijas NR, Varaldo HMP (2006) Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2, 4-dichlorophenoxyacetic acid using slurry bioreactors: Effect of electron acceptor and supplementation with an organic carbon source. Process Biochem 41:195–196. doi:10.1016/j.procbio.2006.04.004

    Google Scholar 

  • Guo Q, Zhang J, Wan R, Xie S (2014) Impacts of carbon sources on simazine biodegradation by Arthrobacter strain SD3-25 in liquid culture and soil microcosm. Int Biodeter Biodegr 89:1–6. doi:10.1016/j.ibiod.2013.12.018

    Article  CAS  Google Scholar 

  • Hamouda SA, Marzouk MA, Abbassy MA, Abd‐El‐Haleem DA, Shamseldin A (2013) Isolation and identification of efficient Egyptian malathion‐degrading bacterial isolates. J Basic Microbiol 53:1–7. doi:10.1002/jobm.201300220

    Article  Google Scholar 

  • Hauschild JE, Masai E, Sugiyama K, Hatta T, Kimbara K, Fukuda M, Yano K (1996) Identification of an alternative 2, 3-dihydroxybiphenyl 1, 2-dioxygenase in Rhodococcus sp. strain RHA1 and cloning of the gene. Appl Environ Microbiol 62:2940–2946

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hayes TB, Anderson LL, Beasley VR, de Solla SR, Iguchi T, Ingraham H et al (2011) Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem Mol Biol 127:64–73. doi:10.1016/j.jsbmb.2011.03.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hou Y, Dong W, Wang F, Li J, Shen W, Li Y, Cui Z (2014) Degradation of acetochlor by a bacterial consortium of Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1. Lett Appl Microbiol 59:35–42. doi:10.1111/lam.12242.http://www.fehd.gov.hk/english/safefood/pesticides.html, pest control, pesticides, food and environmental hygiene department, 1-1-2013

  • Hu GP, Zhao Y, Song FQ, Liu B, Vasseur L, Douglas C, You MS (2014) Isolation, identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain, FLQ-11-1. Res Microbiol 165:110–118. doi:10.1016/j.resmic.2013

    Article  PubMed  CAS  Google Scholar 

  • Hulscher TEM, Cornelissen G (1996) Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants – a review. Chemosphere 32:609–626. doi:10.1016/0045-6535(95)00345-2

  • Jain DK, Lee H, Trevors JT (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J Ind Microbiol 10:87–93. doi:10.1007/BF01583840

    Article  Google Scholar 

  • Jariyal M, Gupta VK, Mandal K, Jindal V, Banta G, Singh B (2014) Isolation and characterization of novel phorate-degrading bacterial species from agricultural soil. Environ Sci Pollut Res 21:2214–2222. doi:10.1007/s11356-013-2155-2

    Article  CAS  Google Scholar 

  • Jin GZ, Kim SM, Lee SY, Park JS, Kim DH, Lee MJ, Sim KT, Kang HG, Kim IJ, Shin SK, Seok KS, Hwang SR (2013) Levels and potential sources of atmospheric organochlorine pesticides at Korea background sites. Atmos Environ 68:333–342. doi:10.1016/j.atmosenv.2012.10.036

    Article  CAS  Google Scholar 

  • Jørgensen KS, Salminen JM, Björklöf K (2010) Monitored natural attenuation. Chapter 14, In Bioremediation, Humana Press, pp 217–233. doi:10.1007/978-1-60761-439-5_14

  • Joutey NT, Bahafid W, Sayel H, Ghachtouli NEI (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Agricultural and biological sciences. Biodegradation – Life of Science, ISBN 978-953-51-1154-2. INTECH, Open Access Publisher, pp 289–319. doi: 10.5772/56194. Available from: http://www.intechopen.com/books/biodegradation-life-of-science/biodegradation-involved-microorganisms-and-genetically-engineered-microorganisms

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288. doi:10.1007/s11157-010-9215-6

    Article  CAS  Google Scholar 

  • Kapley A, Purohit HJ (2009) Genomic tools in bioremediation. Indian J Microbiol 49:108–113. doi:10.1007/s12088-009-0012-2

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khan AA, Zytner RG (2013) Degradation rates for petroleum hydrocarbons undergoing bioventing at the meso-scale. Bioremediat J 17:159–172. doi:10.1080/10889868.2013.807772

    Article  CAS  Google Scholar 

  • Kim I, Kim DU, Kim NH, Ka JO (2014) Isolation and characterization of fenobucarb-degrading bacteria from rice paddy soils. Biodegradation 25:383–394. doi:10.1007/s10532-013-9667-9

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T, Wang J, Wang J, Wang F, Sun, F (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25:2257–2264. doi:10.1016/S1001-0742(12)60288-5

  • Kosaric N (2001) Biosurfactants and their application for soil bioremediation biosurfactants for soil bioremediation. Food Technol Biotechnol 39:295–304

    CAS  Google Scholar 

  • Krishna KR, Philip L (2011) Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide-enriched cultures. Appl Biochem Biotechnol 164:1257–1277. doi:10.1007/s12010-011-9211-5

    Article  CAS  Google Scholar 

  • Kuhad RC, Johri AK, Singh A, Ward OP (2004) Bioremediation of pesticide-contaminated soils. In: Applied bioremediation and phytoremediation. Springer, Berlin/Heidelberg, pp 35–54. doi:10.1007/978-3-662-05794-0_3

    Chapter  Google Scholar 

  • Kumar S, Dagar VK, Khasa YP, Kuhad RC (2013) Genetically Modified Microorganisms (GMOs) for bioremediation. In: Biotechnology for environmental management and resource recovery. Springer, New Delhi, pp 191–218. doi:10.1007/978-81-322-0876-1_11

    Chapter  Google Scholar 

  • Laine MM, Jørgensen KS (1996) Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl Environ Microbiol 62:1507–1513. doi:0099-2240/96/$04.0010

    Google Scholar 

  • Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16:929–933. doi:10.1038/nbt1098-929

    Article  PubMed  CAS  Google Scholar 

  • Latifi AM, Khodi S, Mirzaei M, Miresmaeili M, Babavalian H (2014) Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 11:3140–3146. doi:10.5897/AJB11.2814

    Google Scholar 

  • Lima D, Viana P, Andre S, Chelinho S, Costa C, Ribeiro R, Sousa JP, Fialho AM, Viegas CA (2009) Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74:187–192. doi:10.1016/j.chemosphere.2008.09.083

    Article  PubMed  CAS  Google Scholar 

  • Lin TC, Pan PT, Cheng SS (2010) Ex situ bioremediation of oil-contaminated soil. J Hazard Mater 176:27–34. doi:10.1016/j.jhazmat.2009.10.080

    Article  PubMed  CAS  Google Scholar 

  • Mahiudddin M, Fakhruddin ANM, Chowdhury MAZ, Rahman MA, Alam MK (2014) Degradation of the organophosphorus insecticide diazinon by soil bacterial isolate. Int J Biotechnol 3:12–23

    Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced as a result of the introduction of glyphosate resistant crops. Chemosphere 61:844–855. doi:10.1016/j.chemosphere.2005.04.051

    Article  PubMed  CAS  Google Scholar 

  • Martin Laurent F, Piutti S, Hallet S, Wagschal I, Philippot L, Catroux G, Soulas G (2003) Monitoring of atrazine treatment on soil bacterial, fungal and atrazine‐degrading communities by quantitative competitive PCR. Pest Manag Sci 59:259–268. doi:10.1002/ps.630

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375. doi:10.1016/j.envint.2011.06.003

    Article  PubMed  CAS  Google Scholar 

  • Monard C, Martin-Laurent F, Lima O, Devers-Lamrani M, Binet F (2013) Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 24:203–213. doi:10.1007/s10532-012-9574-5

    Article  PubMed  CAS  Google Scholar 

  • Moreno LD, Pena A (2009) Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. Sci Total Environ 407:1489–1495. doi:10.1016/j.scitotenv.2008.10.047

    Article  CAS  Google Scholar 

  • Morgante V, Lopez AL, Flores C, Gonzalez M, Gonzalez B, Vasquez M, Rossell o-Mora R, Seeger M (2010) Bioaugmentation with Pseudomonas sp. Strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils. FEMS Microbiol Ecol 71:114–126. doi:10.1111/j.1574-6941.2009.00790.x

    Article  PubMed  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compound. Microbiol Res 165:363–375. doi:10.1016/j.micres.2009.08.001

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Arnanz J, Jiménez B (2011) New DDT inputs after 30 years of prohibition in Spain. A case study in agricultural soils from south-western Spain. Environ Pollut 159:3640–3646. doi:10.1016/j.envpol.2011.07.027

    Article  PubMed  CAS  Google Scholar 

  • Nayyar N, Sangwan N, Kohli P, Verma H, Kumar R, Negi V, Oldach P, Mahato NK, Gupta V, Lal R (2014) Hexachlorocyclohexane: persistence, toxicity and decontamination. Rev Environ Health 29:49–52. doi:10.1515/reveh-2014-0015

    Article  PubMed  CAS  Google Scholar 

  • Noor S, Changey F, Oakeshott JG, Scott C, Martin-Laurent F (2014) Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA. Biodegradation 25:21–30. doi:10.1007/s10532-013-9637-2

    Article  PubMed  CAS  Google Scholar 

  • Nousiaine AO, Björklöf K, Sagarkar S, Mukherjee S, Purohit HJ, Kapley A, Jørgensen KS (2014) Atrazine degradation in boreal nonagricultural subsoil and tropical agricultural soil. J Soils Sediment 14:1179–1188. doi: 10.1007/s11368-014-0868-6

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444. doi:10.1007/s11157-013-9320-4

    Article  CAS  Google Scholar 

  • Olaniran AO, Pillay D, Pillay B (2006) Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere 63:600–608. doi:10.1016/j.chemosphere.2005.08.027

    Article  PubMed  CAS  Google Scholar 

  • Paliwal V, Puranik S, Purohit HJ (2012) Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 166:903–924. doi:10.1007/s12010-011-9479-5

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Shin SK, Kim WI, Kim BH (2011) Residual levels and identify possible sources of organochlorine pesticides. Atmos Environ 45:7496–7502. doi:10.1016/j.atmosenv.2010.10.030

    Article  CAS  Google Scholar 

  • Paudyn K, Rutter A, Kerry Rowe R, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114. doi:10.1016/j.coldregions.2007.07.006

    Article  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142. doi:10.1016/j.tibtech.2005.01.001

    Article  PubMed  CAS  Google Scholar 

  • Pereira L (2014) Persistent organic chemicals of emerging environmental concern. In: Environmental deterioration and human health, pp 163–213. doi:10.1007/978-94-007-7890-0_8

  • Pimmata P, Reungsang A, Plangklang P (2013) Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. Int Biodeterm Biodegr 85:196–204. doi:10.1016/j.ibiod.2013.07.009

    Article  CAS  Google Scholar 

  • Plangklang P, Reungsang A (2010) Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Biochem 45:230–238. doi:10.1016/j.procbio.2009.09.013

    Article  CAS  Google Scholar 

  • Polti MA, Aparicioa JD, Benimeli CS, Amorosoa MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by Actinobacteria. Int Biodeterm Biodegr 88:48–55. doi:10.1016/j.ibiod.2013.12.004

    Article  CAS  Google Scholar 

  • Prasad M, Garg A, Maheshwari R (2012) Decontamination of Polluted Water Employing Bioremediation Processes: A Review. Int J LifeSci Bt Pharm Res 1

    Google Scholar 

  • Purohit HJ, Raje DV, Kapley A, Padmanabhan P, Singh RN (2003) Peer reviewed: genomics tools in environmental impact assessment. Environ Sci Technol 37:356A–363A. doi:10.1021/es032594m

    Article  PubMed  Google Scholar 

  • Qureshi A, Mohan M, Kanade GS, Kapley A, Purohit HJ (2009) In situ bioremediation of organochlorine‐pesticide contaminated microcosm soil and evaluation by gene probe. Pest Manag Sci 65:798–804. doi:10.1002/ps.1757

    Article  PubMed  CAS  Google Scholar 

  • Rehan M, Kluge M, Fränzle S, Kellner H, Ullrich R, Hofrichter M (2014) Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 98:6125–6135. doi:10.1007/s00253-014-5665-z

    Article  PubMed  CAS  Google Scholar 

  • Robles-González IV, Fava F, Poggi-Varaldo HM, Ireri V (2008) A review on slurry bioreactors for bioremediation of soils and sediments. BioMed Central Microb Cell Fact 7:5. doi:10.1186/1475-2859-7-5

    Article  CAS  Google Scholar 

  • Robles-González IV, Ríos-Leal E, Sastre-Conde I, Fava F, Rinderknecht-Seijas N, Poggi-Varaldo HM (2012) Slurry bioreactors with simultaneous electron acceptors for bioremediation of an agricultural soil polluted with lindane. Process Biochem 47:1640–1648. doi:10.1016/j.procbio.2011.10.013

    Article  CAS  Google Scholar 

  • Romeh AA, Hendawi MY (2014) Bioremediation of Certain Organophosphorus Pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Tech 16:265–276

    CAS  Google Scholar 

  • Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohit HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115. doi:10.1016/j.envpol.2012.07.048

    Article  PubMed  CAS  Google Scholar 

  • Sagarkar S, Nousiainen A, Shaligram S, Björklöf K, Lindström K, Jørgensen KS, Kapley A (2014) Soil mesocosm studies on atrazine bioremediation. J Environ Manag 139:208–216. doi:10.1016/j.jenvman.2014.02.016

    Article  CAS  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173. doi:10.1016/j.coldregions.2008.07.004

    Article  Google Scholar 

  • Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterm Biodegr 65:859–865. doi:10.1016/j.ibiod.2011.05.006

    Article  CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289. doi:10.1016/S0958-1669(00)00097-5

  • Scott C, Lewis SE, Milla R, Taylor MC, Rodgers AJW, Dumsday G, Brodie JE, Oakeshott JG, Russell RJ (2010) Short communication: a free-enzyme catalyst for the bioremediation of environmental atrazine contamination. J Environ Manag 91:2075–2078. doi:10.1016/j.jenvman.2010.05.007

    Article  CAS  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2013) Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10:770–778. doi:10.5897/AJB10.989

    Google Scholar 

  • Selvam ADG, Thatheyus AJ, Vidhya R (2013) Biodegradation of the synthetic pyrethroid, fenvalerate by Pseudomonas iridiflava. Am J Microbiol Res 1:32–38

    Article  CAS  Google Scholar 

  • Shiomi N (2013) A novel bioremediation method for shallow layers of soil polluted by pesticides, applied bioremediation – active and passive approaches, Y Patil (ed), ISBN: 978-953-51-1200-6, InTech, doi: 10.5772/56153. Available from: http://www.intechopen.com/books/applied-bioremediation-active-and-passive-approaches/a-novel-bioremediation-method-for-shallow-layers-of-soil-polluted-by-pesticides

  • Shrot S, Ramaty E, Biala Y, Bar-Klein G, Daninos M, Kamintsky L et al (2014) Prevention of organophosphate-induced chronic epilepsy by early benzodiazepine treatment. Toxicology 323:19–25. doi:10.1016/j.tox.2014.05.010

    Article  PubMed  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Silambarasan S, Abraham J (2014) Halophilic bacterium JAS4 in biomineralisation of endosulfan and its metabolites isolated from Gossypium herbaceum rhizosphere soil. J Taiwan Inst Chem Eng 45:1748–1756. doi:10.1016/j.jtice.2014.01.013

    Article  CAS  Google Scholar 

  • Silva E, Fialho AM, Correia IS, Burns RG, Shaw LZ (2004) Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine. Environ Sci Technol 38:632–637. doi:10.1021/es0300822

    Article  PubMed  CAS  Google Scholar 

  • Silva ÍS, Santos EDCD, Menezes CRD, Faria AFD, Franciscon E, Grossman M, Durrant LR (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675. doi:10.1016/j.biortech.2009.03.079

    Article  PubMed  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164. doi:10.1038/nrmicro2050

    Article  PubMed  CAS  Google Scholar 

  • Sirotkina M, Lyagin I, Efremenko E (2012) Hydrolysis of organophosphorus pesticides in soil: new opportunities with eco-compatible immobilized His6-OPH. Int Biodeterm Biodegr 68:18–23. doi:10.1016/j.ibiod.2011.12.004

    Article  CAS  Google Scholar 

  • Smith GJ (1992) Toxicology and pesticide use in relation to wildlife, organophosphorus, and carbamate compounds. CRC Press, Washington, DC.

    Google Scholar 

  • Sniegowski K, Bers K, Goetem KV, Ryckeboer J, Jaeken P, Spanoghe P, Springae D (2011) Improvement of pesticide mineralization in on-farm biopuri¢cation systems by bioaugmentation with pesticide-primed soil. FEMS Microbiol Ecol 76:64–73. doi:10.1111/j.1574-6941.2010.01031.x

    Article  PubMed  CAS  Google Scholar 

  • Steven S. United States Environmental Protection Agency Office of Water, Regulations and Standards Criteria and Standards Division, Washington, DC 20460, EPA Ambient Water Quality Criteria for Aldrin/Dieldrin, Deputy Assistant Administrator, Office of Water Regulations and Standards.

    Google Scholar 

  • Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980. doi:10.1128/AEM.68.12.5973-5980.2002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Swarcewicz M, Gregorczyk A, Sobczak J (2013) Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environ Monit Assess 185:8109–8114. doi:10.1007/s10661-013-3158-7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taiwo AM (2011) Composting as a sustainable waste management technique in developing countries. J Environ Sci Technol 4:93–102. doi:10.3923/jest.2011.93.102

    Article  CAS  Google Scholar 

  • Vander Gast CJ, Whiteley AS, Starkey M, Knowles CJ, Thompson IP (2003) Bioaugmentation strategies for remediating mixed chemical effluents. Biotechnol Prog 19:1156–1161. doi:10.1021/bp020131z

    Article  CAS  Google Scholar 

  • Verma V, Raju SC, Kapley A, Kalia VC, Kanade GS, Daginawala HF, Purohit HJ (2011) Degradative potential of Stenotrophomonas strain HPC383 having genes homologous to dmp operon. Bioresour Technol 102:3227–3233. doi:10.1016/j.biortech.2010.11.016

    Article  PubMed  CAS  Google Scholar 

  • Wan R, Wang Z, Xie S (2014) Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. Sci Total Environ 472:502–508. doi:10.1016/j.scitotenv.2013.11.090

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chi XQ, Zhang JJ, Sun DL, Zhou NY (2014) Bioaugmentation of a methyl parathion contaminated soil with Pseudomonas sp.strain WBC-3. Int Biodeterm Biodegr 87:116–121. doi:10.1016/j.ibiod.2013.11.008

    Article  CAS  Google Scholar 

  • Wasilkowski D, Swędzioł Z, Mrozik A (2012) The applicability of genetically modified microorganisms in bioremediation of contaminated environments. CHEMIK 66:817–826

    CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 641:12–118

    Google Scholar 

  • Zaki MM, Saleh EA, Sonya HM, Rahal A, Sadik AS (2014) Persistence of Sencor herbicide in Streptomycetes-inoculated soil and its effect on some microbial soil. Int J Curr Microbiol Appl Sci 3:726–738

    CAS  Google Scholar 

  • Zhang S, Zhu C, Liu Y, Zhang D, Luo X, Cheng F, Cheng J, Luo Y (2014) Biodegradation of fenpropathrin by a novel Rhodopseudomonas sp. strain pSB07–8. Int J Environ Eng 6:55–67. doi:10.1504/IJEE.2014.057833

    Article  Google Scholar 

  • Zhao H, Geng Y, Chen L, Tao K, Hou T (2013) Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil. Can J Microbiol 59:311–317. doi:10.1139/cjm-2012-0580

    Article  PubMed  CAS  Google Scholar 

  • Zhu ZQ, Yanga X, Wang K, Huang HG, Zhang X, Fang H, Li TQ, Alvad AK, He ZL (2012) Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. J Hazard Mater 235:144–151. doi:10.1016/j.jhazmat.2012.07.033

Download references

Acknowledgment

The authors thank the Director of the National Environmental Engineering Research Institute (NEERI) CSIR, Nagpur, for providing the facilities for carrying out this work. Author Pooja Bhardwaj is grateful to the UGC, for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atya Kapley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bhardwaj, P., Kapley, A. (2015). Bioremediation of Pesticide-Contaminated Soil: Emerging Options. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2598-0_17

Download citation

Publish with us

Policies and ethics