Advertisement

Survey of Indoor Positioning Systems Based on Ultra-wideband (UWB) Technology

  • Guowei Shi
  • Ying Ming
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 348)

Abstract

Indoor positioning is a challenging research area, and various kinds of indoor positioning systems have been developed based on different technologies. Ultra-wideband (UWB) positioning technology is mainly used for high-accuracy indoor wireless positioning. This paper provides an overview of indoor positioning solution based on UWB technology. First, the conception, standardization, and advantages of UWB were introduced, and then four location measure techniques based on UWB technology are analyzed. Finally, the applications and future trends for the technology are provided.

Keywords

Indoor positioning systems Ultra-wideband Measure technique 

References

  1. 1.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 4(8), (2001)Google Scholar
  2. 2.
    Pahlavan, K., Li, X., Makela, J.: Indoor geolocation science and technology. IEEE Commun. Mag. 40(2), 112–118 (2002)CrossRefGoogle Scholar
  3. 3.
    Liu, H., Darabi, H., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 37(6), 1067–1080 (2007)Google Scholar
  4. 4.
    Ladd, J.A.M., Bekris, K.E., Rudys, A.P., Wallach, D.S., Kavraki, L.E.: On the feasibility of using wireless ethernet for indoor localization. IEEE Trans. Wireless Commun. 5(10), 555–559 (2006)Google Scholar
  5. 5.
    Vossiek, M., Wiebking, L., Gulden, P., Wiehardt, J., Hoffmann, C., Heide, P.: Wireless local positioning. IEEE Microwave Mag. 4(4), 77–86 (2003)CrossRefGoogle Scholar
  6. 6.
    Hightower, J., Borriello, G.: Location sensing techniques. In: Technical Report UW CSE 2001-07-30, Department of Computer Science and Engineering, University of Washington (2001)Google Scholar
  7. 7.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. IEEE Compu. Soc. Press 34(8), 57–66 (2001)CrossRefGoogle Scholar
  8. 8.
    Federal Communications Commission: The first report and order regarding ultra-wideband transmission systems. In: FCC 02-48, ET Docket No. 98-153 (2002)Google Scholar
  9. 9.
    DS-UWB Physical Layer Submission to 802.15 Task Group 3a, IEEE 802.15.3a Working Group, P802.15.03/0137r0 (2004)Google Scholar
  10. 10.
    IEEE standard “wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANS). In: IEEE Std. 802.15.4a (2007)Google Scholar
  11. 11.
    Shahriar, E.: UWB Communication Systems: Conventional and 60 GHz. Springer (2013)Google Scholar
  12. 12.
    IEEE P802.15.6, Feb 2012, Part 15.6: Wireless Body Area NetworksGoogle Scholar
  13. 13.
    IEEE P802.15.4f, April 2012, PART 15.4: low-rate wireless personal area networks (LRWPANs). Amendment 2: active radio frequency identification (RFID) system physical layer (PHY)Google Scholar
  14. 14.
    Gezici, S., Tian, Z., Giannakis, G.V., Kobaysahi, H., Molisch, A.F., Poor, H.V., Sahinoglu, Z.: Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 22(4), 70–84 (2005)CrossRefGoogle Scholar
  15. 15.
    Fang, B.: Simple solution for hyperbolic and related position fixes. IEEE Trans. Aerosp. Electron. Syst. 26(5), 748–753 (1990)CrossRefGoogle Scholar
  16. 16.
    Kanaan, M., Pahlavan, K.: A comparison of wireless geolocation algorithms in the indoor environment. Proc. IEEE Wireless Commun. Netw. Conf. 1, 177–182 (2004)Google Scholar
  17. 17.
    Çetin, Ö., Naz, H., Gürcan, R., Öztürk, H., Güneren, H., Yelkovan, Y.: An experimental study of high precision TOA based UWB positioning systems. In: 2012 IEEE International Conference on Ultra-Wideband (ICUWB), pp. 357–361, Sept 2012Google Scholar
  18. 18.
    Torrieri, D.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. 20(2), 183–197 (1984)CrossRefGoogle Scholar
  19. 19.
    Depeng, Y., Husheng, L., Peterson, G., Fathy, A.: Compressive sensing TDOA for UWB positioning system. In: 2011 IEEE Radio and Wireless Symposium (RWS), pp. 194–197, Jan 2011Google Scholar
  20. 20.
    Van Veen, B.D., Buckley, K.M.: Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)CrossRefGoogle Scholar
  21. 21.
    Stoica, P., Moses, R.L.: Introduction to Spectral Analysis. Prentice-Hall, Englewood Cliffs (1997)MATHGoogle Scholar
  22. 22.
    Ottersten, B., Viberg, M., Stoica, P., Nehorai, A.: Exact and large sample ML techniques for parameter estimation and detection in array processing. In: Haykin, S.S., Litva, J., Shepherd, T.J. (eds.) Radar Array Processing, pp. 99–151. Springer, New York (1993)CrossRefGoogle Scholar
  23. 23.
    Zhou, J., Chu, K.M.-K., Ng, J.K.-Y.: Providing location services within a radio cellular network using ellipse propagation model. In: Proceedings of 19th International Conference Advanced Information Networking and Applications, , pp. 559–564, Mar 2005Google Scholar
  24. 24.
    Sapphire DART Product Data Sheet: Zebra Enterprise Solutions, Oakland, CA. http://zes.zebra.com/pdf/products-datasheets/ds_sapp_dart.pdf, (2009)
  25. 25.
    Hardware Datasheet: Ubisense, Cambridge, UK. http://www.ubisense.net/media/pdf/Ubisense%20System%20Overview%20V1.1.pdf, (2007)
  26. 26.
    Zebra Enterprise Solutions Fact Sheet: Zebra Enterprise Solutions, Oakland, CA, 2009, http://zes.zebra.com/pdf/zes_fact_sheet.pdf
  27. 27.
    PLUS®RTLS Data Sheet: Time Domain Corp., Huntsville, AL. http://www.timedomain.com/datasheets/plus-system.pdf, (2009)
  28. 28.
    Bloecher, H.L., Sailer, A., Rollmann, G., Dickmann, J.: 79 GHz UWB automotive short range radar–spectrum allocation and technology trends. Adv. Radio Sci. URSI Open Access J. 7, 61–65 (2009)CrossRefGoogle Scholar
  29. 29.
    Mahfouz, M., Kuhn, M., To, G., Fathy, A.: Integration of UWB and wireless pressure mapping in surgical navigation. IEEE Trans. Microwave Theory Tech. (2009)Google Scholar
  30. 30.
    Zito, F., Zito, D., Pepe, D.: UWB 3.1–10.6 GHz CMOS transmitter for system-on-a-chip nano- power pulse radars. In: Ph.D. Res. Microelectronics Elec. Conf., Bordeaux, France, pp. 189–192, July 2007Google Scholar
  31. 31.
    Zheng, Y., Arusa, M., Wong, K., et al.: A 0.18 µm CMOS 802.15.4a UWB transceiver for communication and localization. In: IEEE Int. Solid State Cir. Conf., San Francisco, CA, 2008, pp. 118–119, p. 600, Feb 2008Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Academy of Telecommunication Research of MIITBeijingChina
  2. 2.Network Manage Center of CAPFBeijingChina
  3. 3.Political Institute of CAPFShanghaiChina

Personalised recommendations