Skip to main content
  • 467 Accesses

Abstract

In D. ananassae, different types of chromosomal rearrangements, like paracentric and pericentric inversions, transpositions, translocations, extrabands, and deficiencies, have recurrently been found in natural populations, but these chromosome rearrangements are rarely found in other species of Drosophila, thus reflecting high mutability in D. ananassae. A large number of inversions are the common feature of D. ananassae genome. A total of 76 paracentric inversions, 21 pericentric inversions, and 48 translocations so far have been reported in the populations of D. ananassae. Paracentric inversions are the predominant feature of D. ananassae genome. Majority of these paracentric inversions have limited distribution and are transient in nature except three cosmopolitan inversions, namely, Alpha (AL) in 2L, Delta (DE) in 3L, and Eta (ET) in 3R, which show worldwide distribution. The presence of pericentric inversions and translocations are among the most unusual features of natural populations of D. ananassae. A given arrangement may occur in one region but may be absent in other. An explanation to account for such disjunct distribution of gene arrangements may be that all types of arrangements did not occur simultaneously in the past history of the species. The former types, being older, had greater opportunities for migration and thereby at present they have a distribution throughout the world. On the contrary, those rearrangements of relatively recent origin and due to obvious impediments in the means of migration could not migrate from their respective native place to the localities where they have been found wanting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Càceres M, Barbadilla A, Ruiz A (1999) Recombination rate predicts inversion size in diptera. Genetics 153:251–259

    PubMed Central  PubMed  Google Scholar 

  • Carson HL (1965) Chromosomal morphism in geographically widespread species of drosophila. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 503–531

    Google Scholar 

  • Charlesworth B, Charlesworth D (1973) Selection of new inversions in multi-locus genetic systems. Genet Res 21:167–183

    Article  Google Scholar 

  • Dasmohapatra DP, Tripathy NK, Das CC (1982) Temperature-related chromosome polymorphism in Drosophila ananassae. Proc: Animal Sci 91:243–247

    Google Scholar 

  • Dobzhansky T, Dreyfus A (1943) Chromosomal aberrations in Brazilian Drosophila ananassae. Proc Natl Acad Sci U S A 26:301–305

    Article  Google Scholar 

  • Federer WT, Steele RGD, Wallace B (1967) Mathematical models for chromosomal inversions. Genetics 55:783–795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher R (1930) The genetical theory of natural selection. Carendon Press, Oxford

    Book  Google Scholar 

  • Freire-Maia N (1955) Chromosome mutations in natural populations of Drosophila ananassae. Dros Inf Serv 29:116–117

    Google Scholar 

  • Freire-Maia N (1961) Peculiar gene arrangements in Brazilian natural populations of Drosophila ananassae. Evolution 15:486–495

    Article  Google Scholar 

  • Futch DG (1966) A study of speciation in South Pacific populations of Drosophila ananassae. Univ Texas Publ 6615:79–120

    Google Scholar 

  • Hinton CW (1979) Two mutators and their suppressors in Drosophila ananassae. Genetics 92:1153–1171

    Google Scholar 

  • Hinton CW (1980) Report of New Mutants – Drosophila species. Dros Inf Serv 55:213–217

    Google Scholar 

  • Hinton CW (1981) Nucleocytoplasmic relations in a mutator-suppressor system of Drosophila ananassae. Genetics 98:77–90

    Google Scholar 

  • Hinton CW and Downs JE (1975) The mitotic, polytene and meiotic chromosomes of Drosophila ananassae. J Hered 66:353–361

    Google Scholar 

  • Illan E (1973) Clone selection and the evolution of modifying features. Theor Popul Biol 4:196–208

    Article  Google Scholar 

  • Kaufmann BP (1936a) The chromosomes of Drosophila ananassae. Science 83:39

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann BP (1936b) A terminal inversion in Drosophila ananassae. Proc Natl Acad Sci U S A 22:591–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikkawa H (1938) Studies on the genetics and cytology of Drosophila ananassae. Genetica 20:458–516

    Article  Google Scholar 

  • Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol 8, e1000501. doi:10.1371/journal.pbio.1000501

  • Kojima K (1967) Likelihood of establishing newly induced inversion chromosomes in small populations. Cienc Cult 19:67–77

    CAS  Google Scholar 

  • Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12:163–234

    Google Scholar 

  • Krimbas CB, Powell JR (1992) Drosophila inversion polymorphism. CRC Press, Boca Raton

    Google Scholar 

  • Li CC (1955) Population genetics. University of Chicago Press, Chicago

    Google Scholar 

  • Matsubayashi H, Juni N, Usui K, Hori SH, Tobari YN (1991) Molecular and histological characterizations of the Om(2D) mutants in Drosophila ananassae. Mole Gen Genet 227:165–172

    CAS  Google Scholar 

  • Moriwaki D, Ito S (1969) Studies on puffing in the salivary gland chromosomes of Drosophila ananassae. Jap J Genet 44:129–138

    Article  Google Scholar 

  • Nei M (1967) Modification of linkage intensity by natural selection. Genetics 57:625–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olvera O, Powell JR, de la Rosa ME et al (1979) Population genetics of Mexican Drosophila. VI. Cytogenetic aspects of the inversion polymorphism in Drosophila pseudoobscura. Evolution 33:381–395

    Article  Google Scholar 

  • Painter PR (1975) Clone selection and the mutation rate. Theor Popul Biol 8:74–80

    Article  CAS  PubMed  Google Scholar 

  • Pegueroles C, Aquadro CF, Mestres F, Pascual M (2013) Gene flow and gene flux shape evolutionary patterns of variation in Drosophila subobscura. Heredity 110:2567–2580

    Article  Google Scholar 

  • Ray-Chaudhuri SP, Jha AP (1966) Studies on salivary gland chromosomes of Indian Drososphila ananassae. In: Proceedings of international cell biology meet, Bombay, pp 352–383

    Google Scholar 

  • Ray-Chaudhuri SP, Jha AP (1967) Genetics of natural populations of Indian Drosophila ananassae. Nucleus 10:81–89

    Google Scholar 

  • Reddy GS, KrishnamurthyNB (1972a) Aberrant gene sequences in Drosophila ananassae from South India. Dros Inf Serv 48:139–140

    Google Scholar 

  • Reddy GS, Krishnamurthy NB (1972b) Two new gene arrangements in Drosophila ananassae from South India. Dros Inf Serv 48:140–142

    Google Scholar 

  • Reddy GS, Krishnamurthy NB (1974) Altitudinal gradients in frequencies of three common inversions in Drosophila ananassae. Dros Inf Serv 51:136–137

    Google Scholar 

  • Sajjan SN, Krishnamurthy NB (1970) Report on two new translocations in natural population of Drosophila ananassae from Hiriyar (Mysore State, India). Dros Inf Serv 45:166

    Google Scholar 

  • Santos M (1986) The role of genic selection in the establishment of inversion polymorphism in Drosophila subobscura. Genetica 69:35–45

    Article  Google Scholar 

  • Schaeffer SW, Goetting-Minesky MP, Kovacevic M et al (2003) Evolutionary genomics of inversions in Drosophila pseudoobscura, evidence for epistasis. Proc Natl Acad Sci U S A 100:8319–8324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seecof RL (1957) Cytological analysis, Section III from XXII. Genetic studies of irradiated natural populations of Drosophila. Univ Texas Publ 5721:269–281

    Google Scholar 

  • Sella G, Bovero S, Ginepro M, Michailova P, Petrova N, Robotti CA, Zelano V (2004) Inherited and somatic cytogenetic variability in Palearctic populations of Chironomus riparius Meigen 1804 (Diptera, Chironomidae). Genome 47:332–344

    Article  CAS  PubMed  Google Scholar 

  • Shirai M, Moriwaki D (1952) Variation of gene sequences in various strains of Drosophila ananassae. Dros Inf Serv 26:120–121

    Google Scholar 

  • Singh BN (1983a) An inversion within subterminal inversion in Drosophila ananassae. Experientia 39:99–100

    Google Scholar 

  • Singh BN (1983b) On intra- and interchromosomal associations in Drosophila ananassae. Genetica 60:231–235

    Google Scholar 

  • Singh BN (1984a) An inversion within subterminal inversion in Drosophila ananassae. Experientia 39:99–100

    Google Scholar 

  • Singh BN (1984b) Genetic distance in inversion polymorphism among natural populations of Drosophila ananassae. Genetica 64:221–224

    Google Scholar 

  • Singh BN (1985) Heterosis without selectional coadaptation in Drosophila ananassae. Theor Appl Genet 69:437–441

    Article  CAS  PubMed  Google Scholar 

  • Singh BN (1986) Genetic similarity between natural populations of Drosophila ananassae from Kerala and Andaman and Nicobar islands. Genetica 69:143–147

    Article  Google Scholar 

  • Singh BN (1988) Evidence for random genetic drift in laboratory populations of Drosophila ananassae. Indian J Exp Biol 26:85–87

    CAS  PubMed  Google Scholar 

  • Singh BN (1989) Inversion polymorphism in Indian populations of Drosophila ananassae. Hereditas 110:133–138

    Article  Google Scholar 

  • Singh BN (1991) Chromosomal polymorphism in Drosophila ananassae: similarity between widely distant populations from India. Kor J Genet 13:27–33

    Google Scholar 

  • Singh BN (1998) Population genetics of inversion polymorphism in Drosophila ananassae. Indian J Exp Biol 36:739–748

    CAS  PubMed  Google Scholar 

  • Singh BN (2001) Patterns of inversion polymorphism in three species of the Drosophila melanogaster species group. Ind J Exp Biol 39:611–622

    Google Scholar 

  • Singh BN, Banerjee R (1997) Increase in the degree of inversion polymorphism in Drosophila bipectinata populations transferred to laboratory conditions. J Zool Syst Evol Res 35:153–157

    Article  Google Scholar 

  • Singh P, Singh BN (2005a) A new paracentric inversion in the left arm of the third chromosome in Drosophila ananassae. Dros Inf Serv 88:10–11

    Google Scholar 

  • Singh P, Singh BN (2005b) A new inversion in Drosophila ananassae from Allahabad, Uttar Pradesh. Dros Inf Serv 88:15–16

    Google Scholar 

  • Singh P, Singh BN (2007a) Chromosomal aberrations in Drosophila ananassae. Dros Inf Serv 90:49–54

    Google Scholar 

  • Singh P, Singh BN (2007b) Population genetics of Drosophila ananassae: variation in the degree of genetic divergence in populations transferred to laboratory conditions. Zool Stud 47:704–712

    Google Scholar 

  • Singh P, Singh BN (2007c) Loss of paracentric inversions in laboratory populations of Drosophila ananassae. Dros Inf Serv 90:26–28

    Google Scholar 

  • Singh P, Singh BN (2008) Population genetics of Drosophila ananassae. Genet Res 90:409–419

    Article  CAS  Google Scholar 

  • Singh P, Singh BN (2010) Population genetics of Drosophila ananassae: evidence for population sub-structuring at the level of inversion polymorphism in Indian natural populations. Int J Biol 2:19–28

    Article  Google Scholar 

  • Singh VK, Mishra M, Jha AP (1971) A new paracentric inversion in Drosophila ananassae. Dros Inf Serv 47:97

    Google Scholar 

  • Stephan W (1994) Effects of genetic recombination and population subdivision on nucleotide sequence variation in Drosophila ananassae. In: Non neutral evolution. Springer, USA, pp 57–66

    Google Scholar 

  • Stone WS, Wheeler MR, Spencer WP, Wilson FD, Neuenschwander JT, Gregg TG, Seecof RL, Ward CL (1957) Genetic studies of irradiated natural populations of Drosophila. XXII. Univ. Texas Publs 5721:260–316

    Google Scholar 

  • Stump AD, Pombi M, Goeddel L, Ribeiro JMC, Wilder JA et al (2007) Genetic exchange in 2La inversion heterokaryotypes of Anopheles gambiae. Insect Mol Biol 16:703–709

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant AH, Mather K (1938) The interrelations of inversions, heterosis and recombination. Am Nat 72:447–452

    Article  Google Scholar 

  • Tobari YN (ed) (1993) Drosophila ananassae, genetical and biological aspects. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Van Valen L (1961) Natural selection on a spontaneous inversion. Am Nat 95:113–120

    Article  Google Scholar 

  • Van Valen L, Levins R (1968) The origins of inversion polymorphisms. Am Nat 102:5–12

    Article  Google Scholar 

  • White MJD (1958) Restrictions on recombination in grasshopper populations and species. Cold Spring Harb Symp Quant Biol 23:307–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, P. (2015). Chromosomal Aberrations in Drosophila ananassae . In: Evolutionary Population Genetics of Drosophila ananassae. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2565-2_6

Download citation

Publish with us

Policies and ethics