Skip to main content
  • 451 Accesses

Abstract

Population genetics of inversion polymorphism was studied in terms of time and space scale to understand the dynamics of inversion polymorphism employing Drosophila ananassae as a model organism. D. ananassae harbors three cosmopolitan inversions, namely, alpha (AL), delta (DE), and eta (ET). Singh and Singh conducted a study where 45 natural populations from different geographic localities of the India (spanning the regions from Kashmir to Kanniyakumari and Gujarat to Nagaland) were studied for chromosomal inversions. All the analyzed populations exhibit the three cosmopolitan inversions, albeit in variable frequencies. Correlations among frequencies of the three cosmopolitan inversions and regression analysis of inversion frequencies with latitude, longitude, and altitude were found to be insignificant. This strengthens the theory of rigid polymorphism in D. ananassae. Genetic differentiation, both spatial and temporal, was also studied at the level of chromosomal polymorphism. Analysis reveals geographic differentiation but no temporal differences. The results were in conformity with the rigid polymorphic systems of D. ananassae, which do not show long-term directional changes as a function of time. Combining the results of the present study with similar studies done earlier, it could be postulated that the three cosmopolitan inversions in D. ananassae show nearly similar frequency distribution while, on geographical or spatial level, the pattern of distribution largely remains the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andjelković M, Savković V, Kalajdzić P (2003) Inversion polymorphism in Drosophila subobscura from two different habitats from the mountain of Goč. Hereditas 138:241–243

    Article  PubMed  Google Scholar 

  • Aulard S, David JR, Lemeunier F (2002) Chromosomal inversion polymorphism in Afrotropical populations of Drosophila melanogaster. Genet Res 79:49–63

    Article  PubMed  Google Scholar 

  • Balanya J, Sena L, Gilchrist GW et al (2003) Evolutionary pace of chromosomal polymorphism in colonizing populations of Drosophila subobscura: an evolutionary time series. Evolution 57:1837–1845

    Article  PubMed  Google Scholar 

  • Beaumont AR, Hoare K (2003) Genetic structure in natural populations. Oxford, Blackwell Science, pp 47–72

    Google Scholar 

  • Bettencourt BR, Kim LY, Hoffmann AA et al (2002) Response to natural and laboratory selection at the Drosophila Hsp70 genes. Evolution 56:1796–1801

    Article  CAS  PubMed  Google Scholar 

  • Brncic D (1962) Chromosomal structure of populations of Drosophila flavopilosa studied in larvae collected in their natural breeding sites. Chromosoma 13:183–195

    Article  CAS  PubMed  Google Scholar 

  • Brncic D, Budnik M (1987) Chromosomal polymorphism in Drosophila subobscura at different elevations in Central Chile. Genetica 75:161–166

    Article  CAS  PubMed  Google Scholar 

  • Càceres M, Barbadilla A, Ruiz A (1999) Recombination rate predicts inversion size in Diptera. Genetics 153:251–259

    PubMed Central  PubMed  Google Scholar 

  • Carson HL (1958a) The population genetics of Drosophila robusta. Adv Genet 9:1–40

    Article  CAS  PubMed  Google Scholar 

  • Carson HL (1958b) Response to selection under different conditions of recombination in Drosophila. Cold Spring Harb Symp Quant Biol 23:291–305

    Article  CAS  PubMed  Google Scholar 

  • Carson HL (1961a) Relative fitness of genetically open and closed experimental populations of Drosophila robusta. Genetics 46:553–567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carson HL (1961b) Heterosis and fitness in experimental populations of Drosophila melanogaster. Evolution 15:496–509

    Article  Google Scholar 

  • Carson HL (1965) Chromosomal morphism in geographically widespread species of Drosophila. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 503–531

    Google Scholar 

  • Carson HL (1970) Chromosomal tracers of origin of species. Science 168:1414–1418

    Article  CAS  PubMed  Google Scholar 

  • Da Cunha AB (1960) Chromosomal variation and adaptation in insects. Annu Rev Entomol 5:85–110

    Article  Google Scholar 

  • Da Cunha AB, Dobzhansky T (1954) A further study of chromosomal polymorphism in Drosophila willistoni in relation to environment. Evolution 8:119–134

    Article  Google Scholar 

  • Das A, Singh BN (1991) Genetic differentiation and inversion clines in Indian natural populations of Drosophila melanogaster. Genome 34:618–625

    Article  CAS  PubMed  Google Scholar 

  • David JR (1982) Latitudinal variability of Drosophila melanogaster: allozyme frequencies divergence between European and Afrotropical populations. Biochem Genet 20:747–761

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T (1962) Rigid vs flexible polymorphism in Drosophila. Am Nat 96:321–328

    Article  Google Scholar 

  • Dobzhansky T (1970) Genetics of evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Dobzhansky T, Pavlovsky O (1957) An experimental study of interaction between genetic drift and natural selection. Evolution 11:311–314

    Article  Google Scholar 

  • Dobzhansky T, Ayala FJ, Stebbins GL et al (1976) Populations, races, subspecies. In: Evolution. Surjeet Publications, Delhi, pp 128–164

    Google Scholar 

  • Eshel I, Matessi C (1998) Canalization, genetic assimilation and preadaptation: a quantitative genetic model. Genetics 149:2119–2133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Etges WJ, Arbuckle KL, Levitan M (2006) Long-term frequency shifts in the chromosomal polymorphisms of Drosophila robusta in the Great Smoky Mountains. Biol J Linn Soc 88:131–141

    Article  Google Scholar 

  • Fukatami A (1976) Chromosomal polymorphism in natural populations of Drosophila lutescens. Jap J Genet 51:265–276

    Article  Google Scholar 

  • Futch DG (1966) A study of speciation in South Pacific populations of Drosophila ananassae. Univ Texas Publ 6615:79–120

    Google Scholar 

  • Huh MK, Lee HY, Mishra SN, Huh HW (2000) Genetic variation and population structure of Carex breviculmis (Cyperaceae) in Korea. J Plant Biol 43:136–142

    Article  CAS  Google Scholar 

  • Inoue Y, Tobari YN, Tsuno K et al (1984) Association of chromosome and enzyme polymorphisms in natural and cage populations of Drosophila melanogaster. Genetics 106:267–277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennington WJ, Partridge L, Hoffmann AA (2006) Patterns of diversity and linkage disequilibrium within cosmopolitan inversion In (3R) Payne in Drosophila melanogaster are indicative of coadaptation. Genetics 172:1655–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larruga JM, Cabrera VM, Gondalez AM et al (1983) Molecular and chromosomal polymorphism in continental and insular populations from the south western range of Drosophila subobscura. Genetica 60:191–205

    Article  Google Scholar 

  • Levitan M (2003) Climatic factors and increased frequencies of southern chromosome forms in natural populations of Drosophila robusta. Evol Ecol Res 5:597–604

    Google Scholar 

  • Lewontin RC (1957) The adaptation of populations to varying environments. Cold Spring Harb Symp Quant Biol 22:395–408

    Article  CAS  PubMed  Google Scholar 

  • Markow TA (1975) A genetic analysis of phototactic behavior in Drosophila melanogaster. I. Selection in the presence of inversions. Genetics 79:527–534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mettler LE, Voelkar RA, Mukai T (1977) Inversion clines in populations of Drosophila melanogaster. Genetics 87:169–176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Narain P (1990) Statistical genetics. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided population. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen R, Slatkin M (2000) Likelihood analysis of ongoing gene flow and historical association. Evolution 54:44–50

    Article  CAS  PubMed  Google Scholar 

  • Petros Y, Merker A, Zeleke H (2007) Analysis of genetic diversity of Guizotia abyssinica from Ethiopia using inter simple sequence repeat markers. Hereditas 144:1824

    Article  Google Scholar 

  • Pinsker W (1981) MDH polymorphism in Drosophila subobscura. I. Selection and hitch-hiking in laboratory populations. Theor Appl Genet 60:107–112

    Article  CAS  PubMed  Google Scholar 

  • Pinsker W, Sperlich D (1979) Allozyme variation in natural populations of Drosophila subobscura along a north–south gradient. Genetica 50:207–219

    Article  Google Scholar 

  • Powell JR (1997) Population genetics-laboratory studies. In: Progress and prospects in evolutionary biology. The Drosophila model. Oxford University Press, New York, pp 94–142

    Google Scholar 

  • Powell JR, Richmond RC (1974) Founder effects and linkage disequilibrium in experimental populations of Drosophila. Proc Natl Acad Sci USA 71:1663–1665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powell JR, Levene H, Dobzhansky T (1972) Chromosomal polymorphism in Drosophila pseudoobscura used for diagnosis of geographical origin. Evolution 26:553–559

    Article  Google Scholar 

  • Prevosti A, Ocaña J, Alonso G (1975) Distances between populations of Drosophila subobscura based on chromosome arrangement frequencies. Theor Appl Genet 45:231–241

    Article  CAS  PubMed  Google Scholar 

  • Ray-Chaudhuri SP, Jha AP (1966) Studies on salivary gland chromosomes of Indian Drososphila ananassae. In: Proceedings of the international cell biology meeting, Bombay, pp 352–383

    Google Scholar 

  • Rodriguez-Trelles F, Rodriguez MA (1998) Rapid microevolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol Ecol 12:829–838

    Article  Google Scholar 

  • Savage JM (1963) Genetic drift. In: Evolution. Holt, Rinehart and Winston, New York, pp 57–59

    Google Scholar 

  • Schaeffer SW, Goetting-Minesky MP, Kovacevic M et al (2003) Evolutionary genomics of inversions in Drosophila pseudoobscura, evidence for epistasis. Proc Natl Acad Sci USA 100:8319–8324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh BN (1974) Quantitative variation of chromosomal polymorphism in natural populations of Drosophila ananassae. Cytologia 39:309–314

    CAS  PubMed  Google Scholar 

  • Singh BN (1982) Persistence of chromosomal polymorphism in various strains of Drosophila ananassae. Genetica 59:151–156

    Article  Google Scholar 

  • Singh BN (1984a) Genetic differentiation in natural populations of Drosophila ananassae. Genetica 63:49–52

    Article  Google Scholar 

  • Singh BN (1984b) High frequency of cosmopolitan inversions in natural populations of Drosophila ananassae from Kerala, South India. J Hered 75:504–505

    Google Scholar 

  • Singh BN (1984c) Genetic distance in inversion polymorphism among natural populations of Drosophila ananassae. Genetica 64:221–224

    Article  Google Scholar 

  • Singh BN (1985) Drosophila ananassae – a genetically unique species. Nucleus 28:169–176

    Google Scholar 

  • Singh BN (1986) Genetic similarity between natural populations of Drosophila ananassae from Kerala and Andaman and Nicobar Islands. Genetica 69:143–147

    Article  Google Scholar 

  • Singh BN (1987) On the degree of genetic divergence in Drosophila ananassae populations transferred to laboratory conditions. Zeit Zool Syst Evol 25:180–187

    Article  Google Scholar 

  • Singh BN (1988) Evidence for random genetic drift in laboratory populations of Drosophila ananassae. Indian J Exp Biol 26:85–87

    CAS  PubMed  Google Scholar 

  • Singh BN (1989a) Inversion polymorphism in Indian populations of Drosophila ananassae. Hereditas 110:133–138

    Article  Google Scholar 

  • Singh BN (1989b) Chromosomal variability in natural population of Drosophila ananassae from Jammu. Indian J Genet 49:241–244

    Google Scholar 

  • Singh BN (1991) Chromosomal polymorphism in Drosophila ananassae: similarity between widely distant populations from India. Kor J Genet 13:27–33

    Google Scholar 

  • Singh BN (1996) Population and behaviour genetics of Drosophila ananassae. Genetica 97:321–329

    Article  CAS  PubMed  Google Scholar 

  • Singh BN (1998) Population genetics of inversion polymorphism in Drosophila ananassae. Indian J Exp Biol 36:739–748

    CAS  PubMed  Google Scholar 

  • Singh BN (2000) Drosophila ananassae: a species characterized by several unusual genetic features. Curr Sci 78:391–398

    Google Scholar 

  • Singh BN (2001) Patterns of inversion polymorphism in three species of the Drosophila melanogaster species group. Indian J Exp Biol 39:611–622

    CAS  PubMed  Google Scholar 

  • Singh BN, Anand S (1995) Genetic divergence at the level of inversion polymorphism in Indian natural populations of Drosophila ananassae. Evol Biol 89:177–190

    Google Scholar 

  • Singh BN, Banerjee R (1997) Increase in the degree of inversion polymorphism in Drosophila bipectinata populations transferred to laboratory conditions. J Zool Syst Evol Res 35:153–157

    Article  Google Scholar 

  • Singh BN, Chatterjee S (1985) Symmetrical and asymmetrical sexual isolation among laboratory strains of Drosophila ananassae. Can J Genet Cytol 27:405–409

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Chatterjee S (1988) Parallelism between male mating propensity and chromosome arrangement frequency in natural populations of Drosophila ananassae. Heredity 60:269–272

    Article  PubMed  Google Scholar 

  • Singh BN, Das A (1992) Changes of inversion polymorphism in laboratory populations of Drosophila melanogaster. Z Zool Syst Evol 30:268–280

    Article  Google Scholar 

  • Singh BN, Singh AK (1987) The effects of heterozygous inversions on crossing over in Drosophila ananassae. Genome 29:802–805

    Article  Google Scholar 

  • Singh P, Singh BN (2007a) Population genetics of Drosophila ananassae: genetic differentiation among Indian natural populations at the level of inversion polymorphism. Genet Res 89:191–199

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Singh BN (2007b) Population genetics of Drosophila ananassae: variation in the degree of genetic divergence in populations transferred to laboratory conditions. Zool Stud 47:704–712

    Google Scholar 

  • Singh P, Singh BN (2008) Population genetics of Drosophila ananassae. Genet Res 90:409–419

    Article  CAS  Google Scholar 

  • Singh P, Singh BN (2010) Population genetics of Drosophila ananassae: evidence for population sub-structuring at the level of inversion polymorphism in Indian natural populations. Intl J Biol 2:19–28

    Article  Google Scholar 

  • Sisodia S, Singh BN (2010) Resistance to environmental stress in Drosophila ananassae: latitudinal variation and adaptation among populations. J Evol Biol 23:1979–1988

    Article  CAS  PubMed  Google Scholar 

  • Solẻ E, Balanyá J, Sperlich D et al (2002) Long term changes of the chromosomal inversion polymorphism of Drosophila subobscura. I. Mediterranean populations from South Western Europe. Evolution 56:830–835

    Article  PubMed  Google Scholar 

  • Song S, Dey DK, Holsinger KE (2006) Differentiation among populations with migration, mutation, and drift: implications for genetic inference. Evolution 60:1–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Soto IM, Soto EM, Carreira VP, Hurtado J, Fanara JJ, Hasson E (2010) Geographic patterns of inversion polymorphism in the second chromosome of the cactophilic Drosophila buzzatii from Northeastern Argentina. J Insect Sci 10:81

    Article  Google Scholar 

  • Sperlich D, Karlik A, Pfriem P (1982) Genetic properties of experimental founder populations of Drosophila melanogaster. Biol Zbl 101:395–441

    Google Scholar 

  • Stalker HD (1980) Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing loading and flight activity. Genetics 95:211–223

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stamenkovic-Radak M, Rasic G, Savic T, Kalajdzic P, Kurbalija Z, Kenig B, Andjelkovic M (2008) Monitoring of the genetic structure of natural populations: change of the effective population size and inversion polymorphism in Drosophila subobscura. Genetica 133:57

    Article  PubMed  Google Scholar 

  • Stocker AJ, Foley B, Hoffmann AA (2004) Inversion frequencies in Drosophila serrata along an eastern Australian transect. Genome 47:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick WJ, Powell JR (1977) Adaptive flexibility of “marginal” versus “central” populations of Drosophila willistoni. Evolution 31:692–694

    Article  CAS  Google Scholar 

  • Thorpe JP (1979) Enzyme variation and taxonomy: the estimation of sampling errors in measurements of interspecific genetic similarity. Biol J Linn Soc 11:369–386

    Article  Google Scholar 

  • Yadav JP, Singh BN (2006) Evolutionary genetics of Drosophila ananassae. I. Effect of selection on body size and inversion frequencies. J Zool Syst Evol Res 44:323–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Singh, P. (2015). Geographical Distribution of Inversion Polymorphism. In: Evolutionary Population Genetics of Drosophila ananassae. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2565-2_3

Download citation

Publish with us

Policies and ethics