Advertisement

Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG Activation Function: An Application

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 611)

Abstract

Medical imaging is a technique to get images of the human body for medical science or clinical purposes. Segmentation of a medical image is a challenging task to isolate the suspicious region from the complex medical images. Genetic algorithms (GAs) are an effective tool to handle the problem of medical image segmentation. In this chapter, an application of color magnetic resonance (MR) brain image segmentation is presented by the parallel optimized multilevel sigmoidal (ParaOptiMUSIG) activation function with the parallel self-organizing neural network (PSONN) architecture. Not only confined within this approach, color MR brain image is also segmented by the NSGA-II-based ParaOptiMUSIG activation function to incorporate the multiple objective function-based scenario. These methods are compared with the process of color MR brain image segmentation by the MUSIG activation function with the PSONN architecture. All the methods are applied on a real-life color MR brain image and the quality of the segmented images are accessed by four standard objective functions. The comparison shows that the ParaOptiMUSIG activation function-based method and the NSGA-II-based ParaOptiMUSIG activation function-based method perform better than the MUSIG activation function-based method to segment the color MR brain image.

Keywords

Segmentation MLSONN architecture PSONN architecture MUSIG activation function Evolution functions 

References

  1. 1.
    Maulik U (2009) Medical image segmentation using genetic algorithms. IEEE Trans Inf Technol Biomed 13(2):166–173CrossRefGoogle Scholar
  2. 2.
    Zhao F, Xie X (2013) An overview of interactive medical image segmentation. Br Mach Vis Assoc Soc Pattern Recogn 7:1–22MathSciNetGoogle Scholar
  3. 3.
    Forouzanfar M, Forghani N, Teshnehlab M (2010) Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Eng Appl Artif Intell 23(2):160–168CrossRefGoogle Scholar
  4. 4.
    Tang H, Wu EX, Ma QY, Gallagher D, Perera GM, Zhuang T (2000) MRI brain image segmentation by multi-resolution edge detection and region selection. Comput Med Imaging Graph 24(6):349–357CrossRefGoogle Scholar
  5. 5.
    Pohle R, Toennies KD (2001) Segmentation of medical images using adaptive region growing. Proc SPIE 4322, Medical Imaging 2001: Image Processing 1337. doi: 10.1117/12.431013
  6. 6.
    Maitra V, Chatterjee A (2008) A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging. Measurement 41(10):1124–1134CrossRefGoogle Scholar
  7. 7.
    Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, New YorkCrossRefMATHGoogle Scholar
  8. 8.
    Ji Z, Liu J, Cao G, Sun Q, Chen Q (2014) Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn 47(7):2454–2466CrossRefGoogle Scholar
  9. 9.
    Hung WL, Yang MS, Chen DH (2006) Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation. Pattern Recogn Lett 27(5):424–438CrossRefGoogle Scholar
  10. 10.
    Jiang J, Trundle P, Ren J (2010) Medical image analysis with artificial neural networks. Comput Med Imaging Graph 34:617–631CrossRefGoogle Scholar
  11. 11.
    Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural network based method for medical image segmentation. Comput Biol Med 44:76–87CrossRefGoogle Scholar
  12. 12.
    Döhler F, Mormann F, Weber B, Elger CE, Lehnertz K (2008) A cellular neural network based method for classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis. J Neurosci Methods 170(2):324–331CrossRefGoogle Scholar
  13. 13.
    Bathen TF, Jensen LR, Sitter B, Fjösne HE, Halgunset J, Axelson DE, Gribbestad IS, Lundgren S (2007) MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat 104(2):181–189CrossRefGoogle Scholar
  14. 14.
    Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge, MAGoogle Scholar
  15. 15.
    Manikandan S, Ramar K, Willjuice Iruthayarajan M, Srinivasagan KG (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568CrossRefGoogle Scholar
  16. 16.
    Yeh JY, Fu JC (2008) A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI. Expert Syst Appl 34(2):1285–1295CrossRefGoogle Scholar
  17. 17.
    Lai CC, Chang CY (2007) A hierarchical evolutionary algorithm for automatic medical image segmentation. Expert Syst Appl 36(1):248–259CrossRefMathSciNetGoogle Scholar
  18. 18.
    Pavan KK, Srinivas VS, SriKrishna A, Reddy BE (2012) Automatic tissue segmentation in medical images using differential evolution. J Appl Sci 12:587–592CrossRefGoogle Scholar
  19. 19.
    Ghosh P, Mitchell M (2006) Segmentation of medical images using a genetic algorithm. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp 1171–1178Google Scholar
  20. 20.
    Zanaty EA, Ghiduk AS (2013) A novel approach based on genetic algorithms and region growing for magnetic resonance image (MRI) segmentation. Comput Sci Inf Syst 10(3):1319–1342CrossRefGoogle Scholar
  21. 21.
    Forghani N, Forouzanfar M, Eftekhari A, Mohammad-Moradi S, Teshnehlab M (2009) Application of particle swarm optimization in accurate segmentation of brain MR images. In: Lazinica A (ed) Particle Swarm Optimization, InTech, pp 203–222. ISBN: 978-953-7619-48-0Google Scholar
  22. 22.
    Nakib A, Cooren Y, Oulhadj H, Siarry P (2008) Magnetic resonance image segmentation based on two-dimensional exponential entropy and a parameter free PSO. Artificial Intelligence, Springer-Verlag, Berlin, Heidelberg, pp 50–61Google Scholar
  23. 23.
    Agrawal S, Panda R, Dora L (2014) A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches. Appl Soft Comput 24:522–533CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya S, Dutta P, Maulik U, Nandi PK (2007) Multilevel activation functions for true color image segmentation using a self supervised parallel self organizing neural network (PSONN) architecture: a comparative study. Int J Comput Sci 2(1):09–21Google Scholar
  25. 25.
    Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan College Publishing Co., New YorkMATHGoogle Scholar
  26. 26.
    Bhattacharyya S, Dutta P, Maulik U (2008) Self organizing neural network (SONN) based gray scale object extractor with a multilevel sigmoidal (MUSIG) activation function. Found Comput Decis Sci 33(2):131–165Google Scholar
  27. 27.
    De S, Bhattacharyya S, Dutta P (2010) Efficient grey-level image segmentation using an optimised MUSIG (OptiMUSIG) activation function. Int J Parallel Emergent Distrib Syst 26(1):1–39CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ghosh A, Pal NR, Pal SK (1993) Self-organization for object extraction using a multilayer neural network and fuzziness measures. IEEE Trans Fuzzy Syst 1(1):54–68CrossRefGoogle Scholar
  29. 29.
    De S, Bhattacharyya S, Chakraborty S (2012) Color image segmentation using parallel OptiMUSIG activation function. Appl Soft Comput 12:3228–3236CrossRefGoogle Scholar
  30. 30.
    Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons Ltd, EnglandMATHGoogle Scholar
  31. 31.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  32. 32.
    Zitzler E, Thiele L (1998) An evolutionary algorithm for multiobjective optimization: the strength pareto approach. Tech. Rep. 43, Gloriastrasse 35, CH-8092 Zurich, SwitzerlandGoogle Scholar
  33. 33.
    Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm. Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, SwitzerlandGoogle Scholar
  34. 34.
    De S, Bhattacharyya S, Chakraborty S (2013) Color image segmentation by NSGA-II based ParaOptiMUSIG activation function. International conference on machine intelligence research and advancement (ICMIRA-2013), pp 105–109Google Scholar
  35. 35.
  36. 36.
    Zhang J, Liu Q, Chen Z (2005) A Medical image segmentation method based on SOM and wavelet transforms. J Commun Comput 2(5):46–50MathSciNetGoogle Scholar
  37. 37.
    Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recogn Lett 19(8):741–747CrossRefMATHGoogle Scholar
  38. 38.
    Liu J, Yang YH (1994) Multi-resolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16(7):689–700CrossRefGoogle Scholar
  39. 39.
    Zhang Y (1996) A survey on evaluation methods for image segmentation. Pattern Recogn 29(8):1335–1346CrossRefGoogle Scholar
  40. 40.
    Bhattacharyya S, Dasgupta K (2003) Color object extraction from a noisy background using parallel multilayer self-organizing neural networks. In: Proceedings of CSI-YITPA(E) 2003, pp 32–36Google Scholar
  41. 41.
    Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Recogn Mach Intell 1(2):224–227CrossRefGoogle Scholar
  42. 42.
    Halkidi M, Vazirgiannis M (2002) Clustering validity assessment using multi representatives. In: Proceedings of the hellenic conference on artificial intelligence (SETN’02), Thessaloniki, GreeceGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Information TechnologyUniversity Institute of Technology, The University of BurdwanBurdwanIndia
  2. 2.Department of Information TechnologyRCC Institute of Information TechnologyKolkataIndia

Personalised recommendations