Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis

  • Anasua Sarkar
  • Rajib Das
Part of the Studies in Computational Intelligence book series (SCI, volume 611)


Pixel classification among overlapping land cover regions in remote sensing imagery is a very challenging task. Detection of uncertainty and vagueness are always the key features for classifying mixed pixels. This paper proposes an approach for pixel classification using a hybrid approach of rough set theory and particle swarm optimization methods. Rough set theory deals with incompleteness and vagueness among data, which property may be utilized for detecting arbitrarily shaped and sized clusters in satellite images. To enable fast automatic clustering of multispectral remote sensing imagery, in this article, we propose a rough set-based heuristical decision rule generation algorithm. For rough-set-theoretic decision rule generation, each cluster is classified using heuristically searched optimal reducts to overcome overlapping cluster problem. This proposed unsupervised algorithm is able to identify clusters utilizing particle swarm optimization based on rough set generated membership values. This approach addresses the overlapping regions in remote sensing images by uncertainties using rough set generated membership values. Particle swarm optimization is a population-based stochastic optimization technique, inspired from the social behavior of bird flock. Therefore, to predict pixel classification of remote sensing imagery, we propose a particle swarm optimization-based membership correction approach over rough set-based initial decision rule generation. We demonstrate our algorithm for segmenting a LANDSAT image of the catchment area of Ajoy River. The newly developed algorithm is compared with fuzzy C-means and K-means algorithms. The new algorithm generated clustered regions are verified with the available ground truth knowledge. The validity analysis is performed to demonstrate the superior performance of our new algorithms with K-means and fuzzy C-means algorithms.


Remote sensing Pixel classification Rough set Rough membership value Particle swarm optimization 


  1. 1.
    Gonzalez RC, Woods RE (1992) Digital image processing. Addison-Wesley, MassachusettsGoogle Scholar
  2. 2.
    Spang R (2003) Diagnostic signatures from microarrays, a bioinformatics concept for personalized medicine. BioSilico 1(2):64–68CrossRefGoogle Scholar
  3. 3.
    Tavazoie S, Hughes J, Campbell M, Cho R, Church G (2001) Systematic determination of genetic network architecture. Bioinformatics 17:405–414CrossRefGoogle Scholar
  4. 4.
    Hoon MJL, de Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454CrossRefGoogle Scholar
  5. 5.
    Lukashin A, Futchs R (1999) Analysis of temporal gene expression profiles, clustering by simulated annealing and determining optimal number of clusters. Nat Genet 22:281–285CrossRefGoogle Scholar
  6. 6.
    Xu Y, Olman V, Xu D (1999) Clustering gene expression data using a graph theoretic approach, an application of minimum spanning trees. Bioinformatics 17:309–318Google Scholar
  7. 7.
    Dembele D, Kastner P (2003) Fuzzy c-means method for clustering microarray data. Bioinformatics 19:973–980CrossRefGoogle Scholar
  8. 8.
    de Souto MCP, R RBCP, Soares RGF, de Araujo DSA, Costa IG, Ludermir TB, Schliep A (2008) Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of IEEE international joint conference on neural networks. IEEE Computer Society, pp 3728–3734Google Scholar
  9. 9.
    Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics 10:27CrossRefGoogle Scholar
  10. 10.
    Maulik U, Sarkar A (2012) Efficient parallel algorithm for pixel classification in remote sensing imagery. GeoInformatica 16(2):391–407CrossRefGoogle Scholar
  11. 11.
    Cordasco G, Scara V, Rosenberg AL (2007) Bounded-collision memory-mapping schemes for data structures with applications to parallel memories. IEEE Trans Parallel Distrib Syst 18(7):973–982CrossRefGoogle Scholar
  12. 12.
    Qin J, Lewis D, Noble W (2003) Kernel hierarchical gene clustering from microarray gene expression data. Bioinformatics 19:2097–2104CrossRefGoogle Scholar
  13. 13.
    Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868CrossRefGoogle Scholar
  14. 14.
    Pawlak Z (1982) Rough sets. Int J Comput Inf 11:341–356CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Pawlak Z (1991) Rough sets, theoretical aspects of reasoning about data. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  16. 16.
    Dixon B, Canade M (2008) Multispectral land use classification using neural networks and support vector machines: One or the other, or both? Int J Remote Sens 29(4):1185–1206CrossRefGoogle Scholar
  17. 17.
    Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogrammetry Remote Sens 66(3):247–259CrossRefGoogle Scholar
  18. 18.
    Foody GM, Mathur A (2004) A Relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42(6):1335–1343CrossRefGoogle Scholar
  19. 19.
    Chiang JH, Hao PY (2004) Support vector learning mechanism for fuzzy rulebased modeling: A new approach. IEEE Trans Fuzzy Syst 12(1):1–12CrossRefGoogle Scholar
  20. 20.
    Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790CrossRefGoogle Scholar
  21. 21.
    Zhang H, Shi W, Liu K (2012) Fuzzy-topology integrated support vector machine for remotely sensed image classification. IEEE Trans Geosci Remote Sens 50(3):850–862CrossRefGoogle Scholar
  22. 22.
    Guiyun L, Junfei C, Jiameng Z (2012) An integrated SVM and fuzzy AHP approach for selecting third party logistics providers. Electrotechnical Review (Electrical Review) ISSN 0033-2097, R. 88 NR 9b/2012Google Scholar
  23. 23.
    Liu Z, Yang H, Yang S (2009) Integration of multi-layer SVM classifier and multistage dynamic fuzzy judgment and its application in SCDA measurement. J Comput 4(11):1139–1144Google Scholar
  24. 24.
    Li Y, Yan L, Liu J (2009) Remote sensing image classification development in the past decade. Proceedings of SPIE 7494(74941D-1):338–343Google Scholar
  25. 25.
    Qiu ZG, Zhang C, Li L. Qiong, Hui XX, Zhang G (2008) High efficient classification on remote sensing images based on SVM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII (B2)Google Scholar
  26. 26.
    Tsujinishi D, Abe S (2003) Fuzzy least squares support vector machines for multiclass problems. Neural Network 16(5/6):785–792CrossRefGoogle Scholar
  27. 27.
    Warrender C, Forrest S (1999) Detecting intrusions using system calls: alternative data models. Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, vol 6, issue 5, pp 133–145Google Scholar
  28. 28.
    Foody GM, Mathur A (2004) Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sens Environ 93(1–2):107–117CrossRefGoogle Scholar
  29. 29.
    Mantero P, Gabriele M, Serpico SB (2005) Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans Geosci Remote Sens 43(3):559–570CrossRefGoogle Scholar
  30. 30.
    Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373CrossRefGoogle Scholar
  31. 31.
    Foody GM, Mathur A (2006) The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens Environ 103(2):179–189CrossRefGoogle Scholar
  32. 32.
    Sahoo BC, Oommen T, Misra D, Newby G (2007) Using the one-dimensional s-transform as a discrimination tool in classification of hyperspectral images. Can J Remote Sens 33(6):551–560CrossRefGoogle Scholar
  33. 33.
    Blanzieri E, Melgani F (2008) Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans Geosci Remote Sens 46(6):1804–1811CrossRefGoogle Scholar
  34. 34.
    Tuia D, Camps-Valls G (2009) Semisupervised remote sensing image classification with cluster kernels. IEEE Geosci Remote Sens Lett 6(2):224–228CrossRefGoogle Scholar
  35. 35.
    Camps-Valls G, Mooij J, Scholkopf B (2010) Remote sensing feature selection by kernel dependence measures. IEEE Geosci Remote Sens Lett 7(3):587–591CrossRefGoogle Scholar
  36. 36.
    Marconcini M, Camps-Valls G, Bruzzone L (2009) A composite semisupervised SVM for classification of hyperspectral images. IEEE Geosci Remote Sens Lett 6(2):234–238CrossRefGoogle Scholar
  37. 37.
    Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Rojo-Alvarez JL, MartinezRamon M (2008) Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans Geosci Remote Sens 46(6):1822–1835CrossRefGoogle Scholar
  38. 38.
    Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97CrossRefGoogle Scholar
  39. 39.
    Chi M, Feng R, Bruzzone L (2008) Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv Space Res 41(11):1793–1799CrossRefGoogle Scholar
  40. 40.
    Gómez-Chova L, Camps-Valls G, Muñoz-Marí J, Calpe J (2008) Semisupervised image classification with Laplacian support vector machines. IEEE Geosci Remote Sens Lett 5(3):336–340CrossRefGoogle Scholar
  41. 41.
    Castillo C, Chollett I, Klein E (2008) Enhanced duckweed detection using bootstrapped SVM classification on medium resolution RGB MODIS imagery. Int J Remote Sens 29(19):5595–5604CrossRefGoogle Scholar
  42. 42.
    Wang WJ (1997) New similarity measures on fuzzy sets and on elements. Fuzzy Sets Syst 85:305–309CrossRefMATHGoogle Scholar
  43. 43.
    Demir B, Erturk S (2009) Clustering-based extraction of border training patterns for accurate SVM classification of hyperspectral images. IEEE Geosci Remote Sens Lett 6(4):840–844CrossRefGoogle Scholar
  44. 44.
    Song X, Cherian G, Fan G (2005) Aν-insensitive SVM approach for compliance monitoring of the conservation reserve program. IEEE Geosci Remote Sens Lett 2(2):99–103CrossRefGoogle Scholar
  45. 45.
    Foody GM (2008) RVM-based multi-class classification of remotely sensed data. Int J Remote Sens 29(6):1817–1823CrossRefGoogle Scholar
  46. 46.
    Ghoggali N, Melgani F, Bazi Y (2009) A multiobjective genetic SVM approach for classification problems with limited training samples. IEEE Trans Geosci Remote Sens 47(6):1707–1718CrossRefGoogle Scholar
  47. 47.
    Huang X, Zhang L (2010) Comparison of vector stacking, multi-SVMs fuzzy output, and multi-SVMs voting methods for multiscale VHR urban mapping. IEEE Geosci Remote Sens Lett 7(2):261–265CrossRefGoogle Scholar
  48. 48.
    Su L (2009) Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis. ISPRS J Photogrammetry Remote Sens 64(4):407–413CrossRefGoogle Scholar
  49. 49.
    Bazi Y, Melgani F (2006) Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 44(11):3374–3385CrossRefGoogle Scholar
  50. 50.
    Pal M (2006) Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data. Int J Remote Sens 27(14):2877–2894CrossRefGoogle Scholar
  51. 51.
    Zhang R, Ma J (2009) Feature selection for hyperspectral data based on recursive support vector machines. Int J Remote Sens 30(14):3669–3677CrossRefGoogle Scholar
  52. 52.
    Archibald R, Fann G (2007) Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci Remote Sens Lett 4(4):674–677CrossRefGoogle Scholar
  53. 53.
    Zhang L, Huang X, Huang B, Li P (2006) A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Trans Geosci Remote Sens 44(10):2950–2961CrossRefGoogle Scholar
  54. 54.
    Gawrys M, Sienkiewicz J (1994) Rsl–the rough set library version 2.0. ICS Research Report 27/94 Warsaw. Poland, Institute of Computer Science. W. U. of TGoogle Scholar
  55. 55.
    Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57CrossRefMathSciNetMATHGoogle Scholar
  56. 56.
    David LD, Donald WB (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI 1(2):224–227Google Scholar
  57. 57.
    Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefMATHGoogle Scholar
  58. 58.
    Young KY (2001) Validating clustering for gene expression dat. Bioinformatics 17:309–318CrossRefMATHGoogle Scholar
  59. 59.
    Hollander M, Wolfe D (1999) Nonparametric statistical methods, 2nd edn. Weily, USAMATHGoogle Scholar
  60. 60.
    Sarkar A, Maulik U, (2009) Parallel point symmetry based clustering for gene microarray data, In: The proceedings of seventh international conference on advances in pattern recognition-2009 (ICAPR, 2009), Kolkata, IEEE Computer Society, Conference Publishing Services (CPS), pp 351–354Google Scholar
  61. 61.
    Sarkar A, Maulik U (2009) Parallel clustering technique using modified symmetry based distance. In: The proceedings of 1st international conference on computer, communication, control and information technology (C3IT 2009), MacMillan Publishers India Ltd, pp 611–618Google Scholar
  62. 62.
    Bandyopadhyay S (2005) Satellite image classification using genetically guided fuzzy clustering with spatial information. Int J Remote Sens 26(3):579–593CrossRefGoogle Scholar
  63. 63.
    Smith III AR (1971) Two-dimensional formal languages and pattern recognition by cellular automata. In: IEEE conference record of 12th annual symposium on switching and automata theoryGoogle Scholar
  64. 64.
    Wolfram S (1986) Cryptography with cellular automata. Lecture notes on computer Science 218:429–432CrossRefGoogle Scholar
  65. 65.
    Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601–644CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.SMIEEEGovernment College of Engineering and Leather TechnologyKolkataIndia
  2. 2.School of Water Resources EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations