Skip to main content

SNR Enhancement of Brillouin Distributed Strain Sensor Using Optimized Receiver

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 43))

  • 1041 Accesses

Abstract

This paper presents an improvement on signal to noise ratio (SNR) of long range Brillouin distributed strain sensor (BDSS). Differential evolution (DE) algorithm is used for receiver (avalanche photo diode (APD)) optimization. We have extracted the strain information of the proposed sensor using Fourier deconvolution algorithm and Landau Placzek ratio (LPR). SNR of the proposed system is realized using Indium Gallium Arsenide (InGaAs) APD detector over 50 km sensing range. We have achieved about 30 dB improvement of SNR using optimized receiver compared to non-optimized receiver at 25 km of sensing distance for a launched power of 10 mW. The strain resolution is observed as 1670\({\mu\varepsilon}\) at a sensing distance of 50 km. Simulation results show that the proposed strain sensor is a potential candidate for accurate measurement of strain in sharp strain variation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Higuera, J.M.: Handbook of Optical Fibre Sensing Technology. Wiley, New York (2002)

    Google Scholar 

  2. Lee, B.: Review of the present status of optical fibre sensors. Opt. Fibre Technol. 9, 57–79 (2003)

    Article  Google Scholar 

  3. Dakin, J.P., Pratt, D.J., Bibby, G.W., Ross, J.N.: Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 21, 569–570 (1985)

    Article  Google Scholar 

  4. Kee, H.H., Lees, G.P., Newson, T.P.: 1.65 μm Raman-based distributed temperature sensor. Electron. Lett. 35, 1869–1871 (1999)

    Article  Google Scholar 

  5. Horiguchi, T., kurashima, T., Tateda, M.: Tensile strain dependence of Brillouin shift in silica optical fibres. IEEE Photon. Technol. Lett. 1 107–108 (1989)

    Google Scholar 

  6. Soto, M.A., Sahu, P.K., Bolognini, G., Pasquale, F.: Di.: Brillouin based distributed temperature sensor employing pulse coding. IEEE Sens. J. 8, 225–226 (2008)

    Article  Google Scholar 

  7. Soto, M.A.: Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors Proc. SPIE 8421, 84219Y (2012)

    Google Scholar 

  8. Le Floch S. et al.: Colour Simplex coding for Brillouin distributed sensors. In: 5th EWOFS, Proceedings of the SPIE vol. 8794 8794–33 (2013)

    Google Scholar 

  9. Agrawal, G.P.: Fibre-Optic Communications Systems, 3rd edn. Wiley, New York (2002)

    Book  Google Scholar 

  10. Pradhan, H.S., Sahu, P.K.: 150 km long distributed temperature sensor using phase modulated probe wave and optimization technique. Optik—Int. J. Light Electron Opt. 125, 441–445 (2014)

    Article  Google Scholar 

  11. Alahbabi, M.N.: Distributed optical fibre sensors based on the coherent detection of spontaneous Brillouin scattering. PhD Thesis, University of Southampton, Southampton, U. K. (2005)

    Google Scholar 

  12. Brinkmeyer, E.: Analysis of the back-scattering method for single-mode optical fibres. J. Opt. Soc. Am. 70, 1010–1012 (1980)

    Article  Google Scholar 

  13. Wait, P.C., Newson, T.P.: Landau Placzek ratio applied to distributed fibre sensing. Opt. Commun. 122, 141–146 (1996)

    Article  Google Scholar 

  14. Bansal, N.P., Doremus, R.H.: Hand book of glass properties. Academic Press, Chapter 2 (1986)

    Google Scholar 

  15. Bennett, W.R.: Electrical Noise. McGraw-Hill, New York (1960)

    Google Scholar 

  16. Robinson, F.N.H.: Noise and Fluctuations in Electronic Devices and Circuits. Oxford University Press, Oxford (1974)

    Google Scholar 

  17. Souza, K.D., Wait, P.C., Newson, T.P.: Characterisation of strain dependence of the Landau-Placzek ratio for distributed sensing. Electron. Lett. 33, 615–616 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Pradhan, H.S., Sahu, P.K. (2016). SNR Enhancement of Brillouin Distributed Strain Sensor Using Optimized Receiver. In: Nagar, A., Mohapatra, D., Chaki, N. (eds) Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics. Smart Innovation, Systems and Technologies, vol 43. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2538-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2538-6_39

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2537-9

  • Online ISBN: 978-81-322-2538-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics