SNR Enhancement of Brillouin Distributed Strain Sensor Using Optimized Receiver

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 43)

Abstract

This paper presents an improvement on signal to noise ratio (SNR) of long range Brillouin distributed strain sensor (BDSS). Differential evolution (DE) algorithm is used for receiver (avalanche photo diode (APD)) optimization. We have extracted the strain information of the proposed sensor using Fourier deconvolution algorithm and Landau Placzek ratio (LPR). SNR of the proposed system is realized using Indium Gallium Arsenide (InGaAs) APD detector over 50 km sensing range. We have achieved about 30 dB improvement of SNR using optimized receiver compared to non-optimized receiver at 25 km of sensing distance for a launched power of 10 mW. The strain resolution is observed as 1670\({\mu\varepsilon}\) at a sensing distance of 50 km. Simulation results show that the proposed strain sensor is a potential candidate for accurate measurement of strain in sharp strain variation environment.

Keywords

SNR DE APD BDSS 

References

  1. 1.
    Lopez-Higuera, J.M.: Handbook of Optical Fibre Sensing Technology. Wiley, New York (2002)Google Scholar
  2. 2.
    Lee, B.: Review of the present status of optical fibre sensors. Opt. Fibre Technol. 9, 57–79 (2003)CrossRefGoogle Scholar
  3. 3.
    Dakin, J.P., Pratt, D.J., Bibby, G.W., Ross, J.N.: Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 21, 569–570 (1985)CrossRefGoogle Scholar
  4. 4.
    Kee, H.H., Lees, G.P., Newson, T.P.: 1.65 μm Raman-based distributed temperature sensor. Electron. Lett. 35, 1869–1871 (1999)CrossRefGoogle Scholar
  5. 5.
    Horiguchi, T., kurashima, T., Tateda, M.: Tensile strain dependence of Brillouin shift in silica optical fibres. IEEE Photon. Technol. Lett. 1 107–108 (1989)Google Scholar
  6. 6.
    Soto, M.A., Sahu, P.K., Bolognini, G., Pasquale, F.: Di.: Brillouin based distributed temperature sensor employing pulse coding. IEEE Sens. J. 8, 225–226 (2008)CrossRefGoogle Scholar
  7. 7.
    Soto, M.A.: Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors Proc. SPIE 8421, 84219Y (2012)Google Scholar
  8. 8.
    Le Floch S. et al.: Colour Simplex coding for Brillouin distributed sensors. In: 5th EWOFS, Proceedings of the SPIE vol. 8794 8794–33 (2013)Google Scholar
  9. 9.
    Agrawal, G.P.: Fibre-Optic Communications Systems, 3rd edn. Wiley, New York (2002)CrossRefGoogle Scholar
  10. 10.
    Pradhan, H.S., Sahu, P.K.: 150 km long distributed temperature sensor using phase modulated probe wave and optimization technique. Optik—Int. J. Light Electron Opt. 125, 441–445 (2014)CrossRefGoogle Scholar
  11. 11.
    Alahbabi, M.N.: Distributed optical fibre sensors based on the coherent detection of spontaneous Brillouin scattering. PhD Thesis, University of Southampton, Southampton, U. K. (2005)Google Scholar
  12. 12.
    Brinkmeyer, E.: Analysis of the back-scattering method for single-mode optical fibres. J. Opt. Soc. Am. 70, 1010–1012 (1980)CrossRefGoogle Scholar
  13. 13.
    Wait, P.C., Newson, T.P.: Landau Placzek ratio applied to distributed fibre sensing. Opt. Commun. 122, 141–146 (1996)CrossRefGoogle Scholar
  14. 14.
    Bansal, N.P., Doremus, R.H.: Hand book of glass properties. Academic Press, Chapter 2 (1986)Google Scholar
  15. 15.
    Bennett, W.R.: Electrical Noise. McGraw-Hill, New York (1960)Google Scholar
  16. 16.
    Robinson, F.N.H.: Noise and Fluctuations in Electronic Devices and Circuits. Oxford University Press, Oxford (1974)Google Scholar
  17. 17.
    Souza, K.D., Wait, P.C., Newson, T.P.: Characterisation of strain dependence of the Landau-Placzek ratio for distributed sensing. Electron. Lett. 33, 615–616 (1997)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.School of Electrical SciencesIIT BhubaneswarBhubaneswarIndia

Personalised recommendations